This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334988 #11 Feb 16 2025 08:34:00 %S A334988 1,1,1,5,1,1,1,5,1,11,1,5,1,1,1,5,1,1,1,35,1,1,1,5,1,1,1,5,1,11,1,5,1, %T A334988 1,36,5,1,1,1,35,1,1,1,5,1,1,1,5,1,11,1,5,1,1,1,61,1,1,1,35,1,1,1,5,1, %U A334988 1,1,5,1,46,1,5,1,1,1,5,1,1,1,35,1,1,1,89,1,1,1,5,1,11 %N A334988 Sum of tetrahedral numbers dividing n. %H A334988 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TetrahedralNumber.html">Tetrahedral Number</a> %F A334988 G.f.: Sum_{k>=1} binomial(k+2,3) * x^binomial(k+2,3) / (1 - x^binomial(k+2,3)). %F A334988 L.g.f.: log(G(x)), where G(x) is the g.f. for A068980. %F A334988 a(n) = Sum_{d|n} A023533(d) * d. %t A334988 nmax = 90; CoefficientList[Series[Sum[Binomial[k + 2, 3] x^Binomial[k + 2, 3]/(1 - x^Binomial[k + 2, 3]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest %t A334988 nmax = 90; CoefficientList[Series[Log[Product[1/(1 - x^Binomial[k + 2, 3]), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest %o A334988 (PARI) ist(n) = my(k=sqrtnint(6*n, 3)); k*(k+1)*(k+2)==6*n; \\ A000292 %o A334988 a(n) = sumdiv(n, d, if (ist(d), d)); \\ _Michel Marcus_, May 19 2020 %Y A334988 Cf. A000292, A023533, A068980, A185027, A279495, A334987. %K A334988 nonn %O A334988 1,4 %A A334988 _Ilya Gutkovskiy_, May 18 2020