This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334996 #44 Aug 21 2025 09:58:11 %S A334996 0,0,1,0,1,0,1,1,0,1,0,1,2,0,1,0,1,2,1,0,1,1,0,1,2,0,1,0,1,4,3,0,1,0, %T A334996 1,2,0,1,2,0,1,3,3,1,0,1,0,1,4,3,0,1,0,1,4,3,0,1,2,0,1,2,0,1,0,1,6,9, %U A334996 4,0,1,1,0,1,2,0,1,2,1,0,1,4,3,0,1,0,1,6,6 %N A334996 Irregular triangle read by rows: T(n, m) is the number of ways to distribute Omega(n) objects into precisely m distinct boxes, with no box empty (Omega(n) >= m). %C A334996 n is the specification number for a set of Omega(n) objects (see Theorem 3 in Beekman's article). %C A334996 The specification number of a multiset is also called its Heinz number. - _Gus Wiseman_, Aug 25 2020 %C A334996 From _Gus Wiseman_, Aug 25 2020: (Start) %C A334996 For n > 1, T(n,k) is also the number of ordered factorizations of n into k factors > 1. For example, row n = 24 counts the following ordered factorizations (the first column is empty): %C A334996 24 3*8 2*2*6 2*2*2*3 %C A334996 4*6 2*3*4 2*2*3*2 %C A334996 6*4 2*4*3 2*3*2*2 %C A334996 8*3 2*6*2 3*2*2*2 %C A334996 12*2 3*2*4 %C A334996 2*12 3*4*2 %C A334996 4*2*3 %C A334996 4*3*2 %C A334996 6*2*2 %C A334996 For n > 1, T(n,k) is also the number of strict length-k chains of divisors from n to 1. For example, row n = 36 counts the following chains (the first column is empty): %C A334996 36/1 36/2/1 36/4/2/1 36/12/4/2/1 %C A334996 36/3/1 36/6/2/1 36/12/6/2/1 %C A334996 36/4/1 36/6/3/1 36/12/6/3/1 %C A334996 36/6/1 36/9/3/1 36/18/6/2/1 %C A334996 36/9/1 36/12/2/1 36/18/6/3/1 %C A334996 36/12/1 36/12/3/1 36/18/9/3/1 %C A334996 36/18/1 36/12/4/1 %C A334996 36/12/6/1 %C A334996 36/18/2/1 %C A334996 36/18/3/1 %C A334996 36/18/6/1 %C A334996 36/18/9/1 %C A334996 (End) %D A334996 Richard Beekman, An Introduction to Number-Theoretic Combinatorics, Lulu Press 2017. %H A334996 Stefano Spezia, <a href="/A334996/b334996.txt">First 3000 rows of the table, flattened</a> %H A334996 Richard Beekman, <a href="https://www.researchgate.net/publication/341090354_A_General_Solution_of_the_Ferris_Wheel_Problem">A General Solution of the Ferris Wheel Problem</a>. %F A334996 T(n, m) = Sum_{k=0..m-1} (-1)^k*binomial(m,k)*tau_{m-k-1}(n), where tau_s(r) = A334997(r, s) (see Theorem 3, Lemma 1 and Lemma 2 in Beekman's article). %F A334996 Conjecture: Sum_{m=0..Omega(n)} T(n, m) = A002033(n-1) for n > 1. %F A334996 The above conjecture is true since T(n, m) is also the number of ordered factorizations of n into m factors (see Comments) and A002033(n-1) is the number of ordered factorizations of n. - _Stefano Spezia_, Aug 21 2025 %e A334996 The triangle T(n, m) begins %e A334996 n\m| 0 1 2 3 4 %e A334996 ---+-------------------------- %e A334996 1 | 0 %e A334996 2 | 0 1 %e A334996 3 | 0 1 %e A334996 4 | 0 1 1 %e A334996 5 | 0 1 %e A334996 6 | 0 1 2 %e A334996 7 | 0 1 %e A334996 8 | 0 1 2 1 %e A334996 9 | 0 1 1 %e A334996 10 | 0 1 2 %e A334996 11 | 0 1 %e A334996 12 | 0 1 4 3 %e A334996 13 | 0 1 %e A334996 14 | 0 1 2 %e A334996 15 | 0 1 2 %e A334996 16 | 0 1 3 3 1 %e A334996 ... %e A334996 From _Gus Wiseman_, Aug 25 2020: (Start) %e A334996 Row n = 36 counts the following distributions of {1,1,2,2} (the first column is empty): %e A334996 {1122} {1}{122} {1}{1}{22} {1}{1}{2}{2} %e A334996 {11}{22} {1}{12}{2} {1}{2}{1}{2} %e A334996 {112}{2} {11}{2}{2} {1}{2}{2}{1} %e A334996 {12}{12} {1}{2}{12} {2}{1}{1}{2} %e A334996 {122}{1} {12}{1}{2} {2}{1}{2}{1} %e A334996 {2}{112} {1}{22}{1} {2}{2}{1}{1} %e A334996 {22}{11} {12}{2}{1} %e A334996 {2}{1}{12} %e A334996 {2}{11}{2} %e A334996 {2}{12}{1} %e A334996 {2}{2}{11} %e A334996 {22}{1}{1} %e A334996 (End) %t A334996 tau[n_,k_]:=If[n==1,1,Product[Binomial[Extract[Extract[FactorInteger[n],i],2]+k,k],{i,1,Length[FactorInteger[n]]}]]; (* A334997 *) %t A334996 T[n_,m_]:=Sum[(-1)^k*Binomial[m,k]*tau[n,m-k-1],{k,0,m-1}]; Table[T[n,m],{n,1,30},{m,0,PrimeOmega[n]}]//Flatten %t A334996 (* second program *) %t A334996 chc[n_]:=If[n==1,{{}},Prepend[Join@@Table[Prepend[#,n]&/@chc[d],{d,DeleteCases[Divisors[n],1|n]}],{n}]]; (* change {{}} to {} if a(1) = 0 *) %t A334996 Table[Length[Select[chc[n],Length[#]==k&]],{n,30},{k,0,PrimeOmega[n]}] (* _Gus Wiseman_, Aug 25 2020 *) %o A334996 (PARI) TT(n, k) = if (k==0, 1, sumdiv(n, d, TT(d, k-1))); \\ A334997 %o A334996 T(n, m) = sum(k=0, m-1, (-1)^k*binomial(m, k)*TT(n, m-k-1)); %o A334996 tabf(nn) = {for (n=1, nn, print(vector(bigomega(n)+1, k, T(n, k-1))););} \\ _Michel Marcus_, May 20 2020 %Y A334996 Cf. A000007 (1st column), A000012 (2nd column), A001222 (Omega function), A002033 (row sums shifted left), A007318. %Y A334996 A008480 gives rows ends. %Y A334996 A073093 gives row lengths. %Y A334996 A074206 gives row sums. %Y A334996 A112798 constructs the multiset with each specification number. %Y A334996 A124433 is a signed version. %Y A334996 A251683 is the version with zeros removed. %Y A334996 A334997 is the non-strict version. %Y A334996 A337107 is the restriction to factorial numbers. %Y A334996 A001055 counts factorizations. %Y A334996 A067824 counts strict chains of divisors starting with n. %Y A334996 A122651 counts strict chains of divisors summing to n. %Y A334996 A167865 counts strict chains of divisors > 1 summing to n. %Y A334996 A253249 counts strict chains of divisors. %Y A334996 A337105 counts strict chains of divisors from n! to 1. %Y A334996 Cf. A007425, A008683, A056239, A124010, A167865, A317144, A319001. %K A334996 nonn,tabf,changed %O A334996 1,13 %A A334996 _Stefano Spezia_, May 19 2020