This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335019 #10 May 24 2020 18:33:30 %S A335019 1,2,4,8,16,32,42,64,70,128,256,390,512,1024,1122,1764,2002,2048,2210, %T A335019 4096,4900,6270,7854,8192,9450,15470,15750,16384,26460,32768,36366, %U A335019 54978,58786,65536,66990,73500,74088,86710,108290,123480,131072,152100,162690 %N A335019 Numbers whose prime exponents generates rotationally symmetric XOR-triangles. %C A335019 For any positive number with prime factorization Product_{k = 1..m} prime(k)^e_k (where prime(k) denotes the k-th prime number and e_m > 0), we build a XOR-triangle with (e_m, ..., e_1) as top row, and having each entry in the subsequent rows be the XOR of the two values above it. This sequence lists integers whose XOR-triangle has 3-fold rotational symmetry. A334990 gives the second row of such XOR-triangles for numbers that are not powers of 2. %C A335019 This sequence has strong connections with A334556: for any n > 0 and k > 0, A019565(A334556(n))^k belongs to this sequence. %C A335019 Every power of 2 belongs to the sequence. %C A335019 If m belongs to this sequence, then m^2 also belongs to this sequence. %H A335019 <a href="/index/X#XOR-triangles">Index entries for sequences related to XOR-triangles</a> %F A335019 A067029(a(n)) = A071178(a(n)). %e A335019 The number 15750 = 7^1 * 5^2 * 3^3 * 2^1 yields the following XOR-triangle: %e A335019 1 2 3 1 %e A335019 3 1 2 %e A335019 2 3 %e A335019 1 %e A335019 As this XOR-triangle has rotational symmetry, 15750 belongs to this sequence. %o A335019 (PARI) is(n) = { %o A335019 my (e); %o A335019 if (n==1, e=[], %o A335019 my (f=factor(n), m=primepi(f[#f~,1])); %o A335019 e=vector(m, k, valuation(n, prime(m+1-k))) %o A335019 ); %o A335019 my (x=e); %o A335019 for (k=1, #e, %o A335019 if (e[k]!=x[#x], return (0)); %o A335019 if (x[1]!=e[#e+1-k], return (0)); %o A335019 x=vector(#x-1, k, bitxor(x[k], x[k+1])); %o A335019 ); %o A335019 return (1); %o A335019 } %Y A335019 Cf. A019565, A067029, A071178, A334556, A334990. %K A335019 nonn,base %O A335019 1,2 %A A335019 _Rémy Sigrist_, May 19 2020