cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335032 Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 + p^(1 - s) - p^(-s)).

Original entry on oeis.org

1, 4, 6, 10, 10, 24, 14, 22, 21, 40, 22, 60, 26, 56, 60, 46, 34, 84, 38, 100, 84, 88, 46, 132, 55, 104, 66, 140, 58, 240, 62, 94, 132, 136, 140, 210, 74, 152, 156, 220, 82, 336, 86, 220, 210, 184, 94, 276, 105, 220, 204, 260, 106, 264, 220, 308, 228, 232, 118
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 20 2020

Keywords

Comments

Dirichlet convolution of A000203 with abs(A097945).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1, n/d] * Abs[MoebiusMu[d]] * EulerPhi[d], {d, Divisors[n]}], {n, 1, 100}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X)/(1 - p*X))[n], ", "))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X/(1 - X))/(1 - p*X))[n], ", "))

Formula

Dirichlet g.f.: zeta(s) * zeta(s-1)^2 / zeta(2*s-2) * Product_{primes p} (1 - 1/(p^s + p)).
Dirichlet g.f.: zeta(s) * zeta(s-1)^2 * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)).
Let f(s) = Product_{primes p} (1 - 1/(p^s + p)), then Sum_{k=1..n} a(k) ~ n^2 * ((log(n)/2 + gamma - 3*zeta'(2)/Pi^2 - 1/4)*f(2) + f'(2)/2), where f(2) = A065463 = Product_{primes p} (1 - 1/(p*(p+1))) = 0.7044422009991655927366033503266372..., f'(2) = f(2) * Sum_{primes p} p*log(p) / ((p+1)*(p^2+p-1)) = 0.23219454323726621271960146689644280341444084188447499043209938838191022838..., for zeta'(2) see A073002 and gamma is the Euler-Mascheroni constant A001620.
a(n) = Sum_{d|n} A176345(d). - Ridouane Oudra, Jan 14 2022
Multiplicative with a(p^e) = sigma(p^e) + p^e - 1. - Amiram Eldar, Dec 25 2022