cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335035 Ordered perimeters of primitive integer triangles with two perpendicular medians.

This page as a plain text file.
%I A335035 #35 Apr 09 2023 07:56:16
%S A335035 54,70,104,154,170,216,252,266,352,368,418,442,464,594,598,620,638,
%T A335035 720,740,748,792,810,902,952,962,988,1054,1102,1118,1134,1148,1170,
%U A335035 1216,1274,1316,1376,1426,1484,1512,1564,1568,1598,1600,1638,1702,1710,1802,1836,1862
%N A335035 Ordered perimeters of primitive integer triangles with two perpendicular medians.
%C A335035 The study of these integer triangles that have two perpendicular medians was proposed in the problem of Concours Général in 2007 in France (see link).
%C A335035 If medians drawn from A and B are perpendicular in centroid G, then a^2 + b^2 = 5 * c^2 (see Maths Challenge picture in link).
%C A335035 All terms are even because each triple is composed of one even side and two odd sides.
%C A335035 For the corresponding primitive triples and miscellaneous properties, see A335034.
%H A335035 Annales Concours Général, <a href="https://www.freemaths.fr/annales-composition-mathematiques-concours-general/concours-general-mathematiques-2007-sujet.pdf">Sujet Concours Général 2007</a>
%H A335035 Maths Challenge, <a href="https://mathschallenge.net/view/perpendicular_medians">Perpendicular medians</a>, Problem with picture.
%F A335035 a(n) = A335036(n) + A335347(n) + A335348(n).
%e A335035 a(1) = 13 + 19 + 22 = 54 with 19^2 + 22^2 = 5 * 13^2 = 845.
%o A335035 (PARI) lista(nn) = {my(vm = List(), vt); for (u=1, nn, for (v=1, nn, if (gcd(u, v) == 1, vt = 0; if ((u/v > 3) && ((u-3*v) % 5), vt = [2*(u^2-u*v-v^2), u^2+4*u*v-v^2, u^2+v^2]); if ((u/v > 1) && (u/v < 2) && ((u-2*v) % 5), vt = [2*(u^2+u*v-v^2), -u^2+4*u*v+v^2, u^2+v^2]); if ((gcd(vt) == 1), listput(vm, vecsum(vt)));););); vecsort(vm);} \\ _Michel Marcus_, May 27 2020
%Y A335035 Cf. A024364 (perimeters of primitive Pythagorean triangles).
%Y A335035 Cf. A335034 (corresponding primitive triples), A335036 (smallest side), A335347 (middle side), A335348 (largest side), A335273 (even side).
%K A335035 nonn
%O A335035 1,1
%A A335035 _Bernard Schott_, May 27 2020