cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335049 The prime factorization of a(n) corresponds to the left diagonal of the XOR-triangle built from prime factorization of n, with 2-adic valuation of a(n) given by last row.

This page as a plain text file.
%I A335049 #5 May 24 2020 18:33:37
%S A335049 1,2,6,4,30,3,210,8,36,15,2310,24,30030,105,10,16,510510,72,9699690,
%T A335049 120,35,1155,223092870,12,900,15015,216,840,6469693230,5,200560490130,
%U A335049 32,770,255255,21,9,7420738134810,4849845,5005,60,304250263527210,70
%N A335049 The prime factorization of a(n) corresponds to the left diagonal of the XOR-triangle built from prime factorization of n, with 2-adic valuation of a(n) given by last row.
%C A335049 This sequence is a self-inverse permutation of the natural numbers.
%C A335049 This sequence has strong connections with A334727.
%H A335049 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%H A335049 <a href="/index/X#XOR-triangles">Index entries for sequences related to XOR-triangles</a>
%F A335049 a(n) = n iff n is a power of 2.
%F A335049 a(n^2) = a(n)^2.
%F A335049 a(A019565(n)) = A019565(A334727(n)).
%F A335049 A006530(a(n)) = A006530(n).
%F A335049 A071178(a(n)) = A071178(n).
%e A335049 For n = 198:
%e A335049 - 198 = 11^1 * 7^0 * 5^0 * 3^2 * 2^1,
%e A335049 - the corresponding XOR-triangle is:
%e A335049          1 0 0 2 1
%e A335049           1 0 2 3
%e A335049            1 2 1
%e A335049             3 3
%e A335049              0
%e A335049 - so a(n) = 11^1 * 7^1 * 5^1 * 3^3 * 2^0 = 10395.
%o A335049 (PARI) a(n) = {
%o A335049     my (f=factor(n),
%o A335049         m=if (#f~==0, 0, primepi(f[#f~, 1])),
%o A335049         x=vector(m, k, valuation(n, prime(m+1-k))),
%o A335049         v=1);
%o A335049     forstep (i=m, 1, -1,
%o A335049         v*=prime(i)^x[1];
%o A335049         x=vector(#x-1, k, bitxor(x[k], x[k+1]));
%o A335049     );
%o A335049     v
%o A335049 }
%Y A335049 Cf. A006530, A019565, A071178, A334727, A335019.
%K A335049 nonn,base
%O A335049 1,2
%A A335049 _Rémy Sigrist_, May 21 2020