This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335050 #9 Dec 21 2024 02:13:03 %S A335050 1,2,3,3,7,8,4,12,21,22,5,18,40,63,64,6,25,66,130,195,196,7,33,100, %T A335050 231,427,624,625,8,42,143,375,803,1428,2054,2055,9,52,196,572,1376, %U A335050 2805,4860,6916,6917,10,63,260,833,2210,5016,9877,16794,23712,23713 %N A335050 Array read by descending antidiagonals, T(n,k) is the number of nodes in the pill tree with initial conditions (n,k), for n and k >= 0. %C A335050 See Bayer and Brandt for a description of the pill tree. %H A335050 Margaret Bayer and Keith Brandt, <a href="http://bayer.faculty.ku.edu/pub/preprints/pill.pdf">The Pill Problem, Lattice Paths and Catalan Numbers</a>, preprint, Mathematics Magazine, Vol. 87, No. 5 (December 2014), pp. 388-394. %H A335050 Keith Brandt and Kaleb Waite, <a href="https://dl.acm.org/doi/10.5555/1516595.1516624">Using recursion to solve the pill problem</a>, Journal of Computing Sciences in Colleges, Volume 24, Issue 5, May 2009. %H A335050 Charlotte A. C. Brennan and Helmut Prodinger, <a href="http://math.sun.ac.za/hproding/pdffiles/pillspaper.pdf">The pills problem revisited</a>, preprint, Quaest. Math., 26(4):427-439, 2003. %H A335050 Donald E. Knuth, John McCarthy, Walter Stromquist, Daniel H. Wagner, and Tim Hesterberg, <a href="https://www.jstor.org/stable/2325015">Problem E3429. Big pills and little pills</a>, The American Mathematical Monthly, 99(7):684, 1992. %F A335050 T(0,k) = k+1; T(n,0) = 1 + T(n-1,1); T(n,k) = 1 + T(n-1,k+1) + T(n,k-1) for n and k > 0. %F A335050 T(n,k) = Sum_{j=0..n} (binomial(2*j+k+2, j+1) - binomial(2*j+k+2, j)). %e A335050 The array begins: %e A335050 1 2 3 4 5 6 ... %e A335050 3 7 12 18 25 33 ... %e A335050 8 21 40 66 100 143 ... %e A335050 22 63 130 231 375 572 ... %e A335050 64 195 427 803 1376 2210 ... %e A335050 196 624 1428 2805 5016 8398 ... %e A335050 ... %o A335050 (PARI) T(n,k) = sum(j=0, n, binomial(2*j+k+2, j+1) - binomial(2*j+k+2, j)); %Y A335050 Cf. A000108, A014138 (column 1), A120304 (column 2). %Y A335050 Cf. A002057 (first differences of column 3). %K A335050 nonn,tabl %O A335050 0,2 %A A335050 _Michel Marcus_, May 21 2020