cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335050 Array read by descending antidiagonals, T(n,k) is the number of nodes in the pill tree with initial conditions (n,k), for n and k >= 0.

This page as a plain text file.
%I A335050 #9 Dec 21 2024 02:13:03
%S A335050 1,2,3,3,7,8,4,12,21,22,5,18,40,63,64,6,25,66,130,195,196,7,33,100,
%T A335050 231,427,624,625,8,42,143,375,803,1428,2054,2055,9,52,196,572,1376,
%U A335050 2805,4860,6916,6917,10,63,260,833,2210,5016,9877,16794,23712,23713
%N A335050 Array read by descending antidiagonals, T(n,k) is the number of nodes in the pill tree with initial conditions (n,k), for n and k >= 0.
%C A335050 See Bayer and Brandt for a description of the pill tree.
%H A335050 Margaret Bayer and Keith Brandt, <a href="http://bayer.faculty.ku.edu/pub/preprints/pill.pdf">The Pill Problem, Lattice Paths and Catalan Numbers</a>, preprint, Mathematics Magazine, Vol. 87, No. 5 (December 2014), pp. 388-394.
%H A335050 Keith Brandt and Kaleb Waite, <a href="https://dl.acm.org/doi/10.5555/1516595.1516624">Using recursion to solve the pill problem</a>, Journal of Computing Sciences in Colleges, Volume 24, Issue 5, May 2009.
%H A335050 Charlotte A. C. Brennan and Helmut Prodinger, <a href="http://math.sun.ac.za/hproding/pdffiles/pillspaper.pdf">The pills problem revisited</a>, preprint, Quaest. Math., 26(4):427-439, 2003.
%H A335050 Donald E. Knuth, John McCarthy, Walter Stromquist, Daniel H. Wagner, and Tim Hesterberg, <a href="https://www.jstor.org/stable/2325015">Problem E3429. Big pills and little pills</a>, The American Mathematical Monthly, 99(7):684, 1992.
%F A335050 T(0,k) = k+1; T(n,0) = 1 + T(n-1,1); T(n,k) = 1 + T(n-1,k+1) + T(n,k-1) for n and k > 0.
%F A335050 T(n,k) = Sum_{j=0..n} (binomial(2*j+k+2, j+1) - binomial(2*j+k+2, j)).
%e A335050 The array begins:
%e A335050     1    2    3    4     5     6 ...
%e A335050     3    7   12   18    25    33 ...
%e A335050     8   21   40   66   100   143 ...
%e A335050    22   63  130  231   375   572 ...
%e A335050    64  195  427  803  1376  2210 ...
%e A335050   196  624 1428 2805  5016  8398 ...
%e A335050   ...
%o A335050 (PARI) T(n,k) = sum(j=0, n, binomial(2*j+k+2, j+1) - binomial(2*j+k+2, j));
%Y A335050 Cf. A000108, A014138 (column 1), A120304 (column 2).
%Y A335050 Cf. A002057 (first differences of column 3).
%K A335050 nonn,tabl
%O A335050 0,2
%A A335050 _Michel Marcus_, May 21 2020