A335052
Odd unitary abundant numbers whose unitary abundancy is closer to 2 than that of any smaller odd unitary abundant number.
Original entry on oeis.org
15015, 19635, 21945, 23205, 25935, 31395, 33915, 39585, 41055, 45885, 51765, 80535, 83265, 354585, 359205, 361515, 366135, 382305, 389235, 400785, 403095, 407715, 414645, 416955, 423885, 430815, 437745, 442365, 77967015, 132335385, 617102535, 724239285, 1756753845
Offset: 1
The unitary abundancies of the first terms are 2.148..., 2.112..., 2.099..., 2.085..., 2.072..., ...
-
usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); seq = {}; r = 3; Do[s = usigma[n]/n; If[s > 2 && s < r, AppendTo[seq, n]; r = s], {n, 1, 10^6, 2}]; seq
A335055
Odd infinitary abundant numbers whose infinitary abundancy is closer to 2 than that of any smaller odd infinitary abundant number.
Original entry on oeis.org
945, 29835, 33345, 43065, 46035, 49875, 83265, 354585, 359205, 361515, 366135, 382305, 389235, 400785, 403095, 407715, 414645, 416955, 423885, 430815, 437745, 442365, 77967015, 132335385, 210124665, 719709375, 724239285, 1756753845, 9665740455, 10394173335
Offset: 1
The infinitary abundancies of the first terms are 2.031..., 2.027..., 2.015..., 2.006..., 2.001..., ...
-
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; seq = {}; r = 3; Do[s = isigma[n]/n; If[s > 2 && s < r, AppendTo[seq, n]; r = s], {n, 1, 10^5, 2}]; seq
A336679
Odd exponential abundant numbers whose exponential abundancy is closer to 2 than that of any smaller odd exponential abundant number.
Original entry on oeis.org
225450225, 385533225, 481583025, 538472025, 672624225, 985646025, 1150227225, 1566972225, 1685513025, 2105433225, 2679615225, 6485886225, 6554064825, 6933060225, 9150077475, 179678493225, 185601564225, 191620685025, 195686793225
Offset: 1
The exponential version of
A188263.
-
esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; seq = {}; rm = 3; Do[r = esigma[n]/n; If[r > 2 && r < rm, rm = r; AppendTo[seq, n]], {n, 1, 10^9, 2}]; seq
Showing 1-3 of 3 results.
Comments