This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335054 #7 May 23 2020 05:32:36 %S A335054 24,30,40,54,56,70,88,104,642,654,678,726,762,786,822,834,894,906,942, %T A335054 978,1002,1014,1038,1074,1086,1146,1158,1182,1194,1266,1338,1362,1374, %U A335054 1398,1434,1446,1506,1536,1542,1578,1596,2406,2454,2514,2526,2586,2598,2634 %N A335054 Infinitary barely abundant numbers: infinitary abundant numbers whose infinitary abundancy is closer to 2 than that of any smaller infinitary abundant number. %C A335054 The infinitary abundancy of a number k is isigma(k)/k, where isigma(k) is the sum of infinitary divisors of k (A049417). %H A335054 Amiram Eldar, <a href="/A335054/b335054.txt">Table of n, a(n) for n = 1..10000</a> %e A335054 The infinitary abundancies of the first terms are 2.5, 2.4, 2.25, 2.222..., 2.142..., 2.057..., ... %t A335054 fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; seq = {}; r = 3; Do[s = isigma[n]/n; If[s > 2 && s < r, AppendTo[seq, n]; r = s], {n, 1, 3000}]; seq %Y A335054 The infinitary version of A071927. %Y A335054 Cf. A049417, A129656, A302570, A302571. %K A335054 nonn %O A335054 1,1 %A A335054 _Amiram Eldar_, May 21 2020