A335055
Odd infinitary abundant numbers whose infinitary abundancy is closer to 2 than that of any smaller odd infinitary abundant number.
Original entry on oeis.org
945, 29835, 33345, 43065, 46035, 49875, 83265, 354585, 359205, 361515, 366135, 382305, 389235, 400785, 403095, 407715, 414645, 416955, 423885, 430815, 437745, 442365, 77967015, 132335385, 210124665, 719709375, 724239285, 1756753845, 9665740455, 10394173335
Offset: 1
The infinitary abundancies of the first terms are 2.031..., 2.027..., 2.015..., 2.006..., 2.001..., ...
-
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; seq = {}; r = 3; Do[s = isigma[n]/n; If[s > 2 && s < r, AppendTo[seq, n]; r = s], {n, 1, 10^5, 2}]; seq
A336254
Exponential barely abundant numbers: exponential abundant numbers whose exponential abundancy is closer to 2 than that of any smaller exponential abundant number.
Original entry on oeis.org
900, 1764, 3600, 4356, 4500, 4900, 12348, 47916, 79092, 112500, 605052, 2812500, 13366548, 29647548, 89139564, 231708348, 701538156, 1757812500, 14772192228, 32179382604, 43945312500, 71183762748, 620995547124, 990454107996, 3417547576788, 3488004374652, 10271220141996
Offset: 1
The first 6 exponential abundant numbers, 900, 1764, 3600, 4356, 4500 and 4900, have decreasing values of exponential abundancy: 2.4, 2.285..., 2.2, 2.181..., 2.08, 2.057... and therefore they are in this sequence. The next exponential abundant number with a lower exponential abundancy is 12348 with eisgma(12348)/12348 = 2.040...
The exponential version of
A071927.
-
fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; rm = 3; s={}; Do[r = esigma[n]/n; If[r <= 2, Continue[]]; If[r < rm, rm = r; AppendTo[s, n]], {n, 1, 10^6}]; s
A336252
Infinitary barely deficient numbers: infinitary deficient numbers whose infinitary abundancy is closer to 2 than that of any smaller infinitary deficient number.
Original entry on oeis.org
1, 2, 8, 84, 110, 128, 1155, 3680, 6490, 8200, 8648, 12008, 18632, 32768, 724000, 1495688, 2095208, 3214090, 3477608, 3660008, 5076008, 12026888, 16102808, 26347688, 29322008, 33653888, 73995392, 615206030, 815634435, 2147483648, 42783299288, 80999455688
Offset: 1
8 is a term since it is infinitary deficient (A129657), and isigma(8)/8 = 15/8 is higher than isigma(k)/k for all the infinitary deficient numbers k < 8.
-
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; seq = {}; r = 0; Do[s = isigma[n]/n; If[s < 2 && s > r, AppendTo[seq, n]; r = s], {n, 1, 10^6}]; seq
Showing 1-3 of 3 results.
Comments