cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335059 a(n) is the number of vertices in an n-gon formed by the straight line segments connecting vertex k to vertex 2k mod n.

Original entry on oeis.org

3, 4, 6, 7, 11, 11, 14, 16, 26, 22, 36, 33, 40, 45, 61, 50, 76, 72, 81, 87, 111, 95, 131, 124, 137, 146, 176, 145, 201, 193, 208, 218, 256, 228, 286, 275, 294, 307, 351, 316, 386, 374, 395, 409, 461, 421, 501, 486, 511, 528, 586, 539, 631, 615, 642, 660, 726
Offset: 3

Views

Author

Lars Blomberg, May 24 2020

Keywords

Comments

See A335057 for illustrations.

Crossrefs

Cf. A335057 (regions), A335058 (edges), A335129 (distinct lines).

Programs

  • PARI
    bc=[[5,0,19,24],[5,-16,75,24],[5,-18,64,24],[5,-18,88,24],[5,-34,24,24],[5,-34,192,24],[5,-34,216,24],[5,-34,0,24]];
    m=[[1,6,1],[5,6,1],[3,6,2],[2,12,3],[10,12,3],[4,12,4],[8,12,4],[0,60,5],[6,60,6],[18,60,6],[42,60,6],[54,60,6],[12,60,7],[24,60,7],[36,60,7],[48,60,7],[30,60,8]];
    ix(n)=for(i=1,length(m),x=m[i];if(n%x[2]==x[1], return(x[3])));-1
    a(n)=x=bc[ix(n)];(x[1]*n^2+x[2]*n+x[3])/x[4]
    vector(200,x,a(x+2))

Formula

Empirically for n <= 270.
Select the row in the table below for which d = n mod m. Then a(n) = (a*n^2+bn+c)/denom.
+=============================================+
| d | m | a | b | c | denom |
+---------------------------------------------+
| 1, 5 | 6 | 5 | 0 | 19 | 24 |
| 3 | 6 | 5 | -16 | 75 | 24 |
| 2, 10 | 12 | 5 | -18 | 64 | 24 |
| 4, 8 | 12 | 5 | -18 | 88 | 24 |
| 0 | 60 | 5 | -34 | 24 | 24 |
| 6, 18, 42, 54 | 60 | 5 | -34 | 192 | 24 |
| 12, 24, 36, 48 | 60 | 5 | -34 | 216 | 24 |
| 30 | 60 | 5 | -34 | 0 | 24 |
+=============================================+