A335059 a(n) is the number of vertices in an n-gon formed by the straight line segments connecting vertex k to vertex 2k mod n.
3, 4, 6, 7, 11, 11, 14, 16, 26, 22, 36, 33, 40, 45, 61, 50, 76, 72, 81, 87, 111, 95, 131, 124, 137, 146, 176, 145, 201, 193, 208, 218, 256, 228, 286, 275, 294, 307, 351, 316, 386, 374, 395, 409, 461, 421, 501, 486, 511, 528, 586, 539, 631, 615, 642, 660, 726
Offset: 3
Keywords
Links
- Lars Blomberg, Table of n, a(n) for n = 3..270
Programs
-
PARI
bc=[[5,0,19,24],[5,-16,75,24],[5,-18,64,24],[5,-18,88,24],[5,-34,24,24],[5,-34,192,24],[5,-34,216,24],[5,-34,0,24]]; m=[[1,6,1],[5,6,1],[3,6,2],[2,12,3],[10,12,3],[4,12,4],[8,12,4],[0,60,5],[6,60,6],[18,60,6],[42,60,6],[54,60,6],[12,60,7],[24,60,7],[36,60,7],[48,60,7],[30,60,8]]; ix(n)=for(i=1,length(m),x=m[i];if(n%x[2]==x[1], return(x[3])));-1 a(n)=x=bc[ix(n)];(x[1]*n^2+x[2]*n+x[3])/x[4] vector(200,x,a(x+2))
Formula
Empirically for n <= 270.
Select the row in the table below for which d = n mod m. Then a(n) = (a*n^2+bn+c)/denom.
+=============================================+
| d | m | a | b | c | denom |
+---------------------------------------------+
| 1, 5 | 6 | 5 | 0 | 19 | 24 |
| 3 | 6 | 5 | -16 | 75 | 24 |
| 2, 10 | 12 | 5 | -18 | 64 | 24 |
| 4, 8 | 12 | 5 | -18 | 88 | 24 |
| 0 | 60 | 5 | -34 | 24 | 24 |
| 6, 18, 42, 54 | 60 | 5 | -34 | 192 | 24 |
| 12, 24, 36, 48 | 60 | 5 | -34 | 216 | 24 |
| 30 | 60 | 5 | -34 | 0 | 24 |
+=============================================+
Comments