A335061 Irregular table read by rows; n-th row corresponds to numbers in the range 0..2^n-1 whose binary expansion (possibly left-padded with 0's up to n binary digits) generates rotationally symmetric XOR-triangles.
0, 1, 0, 0, 2, 0, 6, 11, 13, 0, 14, 0, 30, 39, 57, 0, 8, 54, 62, 83, 91, 101, 109, 0, 126, 151, 233, 0, 40, 92, 116, 138, 162, 214, 254, 0, 72, 140, 196, 314, 370, 438, 510, 543, 599, 659, 731, 805, 877, 937, 993, 0, 168, 854, 1022, 1379, 1483, 1589, 1693
Offset: 1
Examples
The first rows are: 0, 1 0 0, 2 0, 6, 11, 13 0, 14 0, 30, 39, 57 0, 8, 54, 62, 83, 91, 101, 109 The XOR-triangles corresponding to the 8 terms of row 7 are (with dots instead of 0's for clarity): T(7,1) = 0: T(7,2) = 8: T(7,3) = 54: T(7,4) = 62, . . . . . . . . . . 1 . . . . 1 1 . 1 1 . . 1 1 1 1 1 . . . . . . . . . 1 1 . . 1 . 1 1 . 1 1 . . . . 1 . . . . . . 1 . 1 . 1 1 . 1 1 1 . . . 1 . . . . 1 1 1 1 . 1 1 . 1 . . 1 . . . . . . 1 . 1 1 . 1 . . . . 1 1 1 1 . . . . T(7,5) = 83: T(7,6) = 91: T(7,7) = 101: T(7,8) = 109: 1 . 1 . . 1 1 1 . 1 1 . 1 1 1 1 . . 1 . 1 1 1 . 1 1 . 1 1 1 1 . 1 . 1 1 . 1 1 . . 1 . 1 1 1 . 1 1 . 1 1 . . 1 1 1 . 1 1 . 1 1 1 1 . . 1 . 1 1 . . 1 . . 1 . 1 1 . . 1 . 1 1 . 1 1 1 . 1 1 . . 1 1 . 1 1 . 1 . 1 1 . 1 . 1 1 1 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1275 (rows 1 <= n <= 24, flattened)
- A. Barbé, Symmetric patterns in the cellular automaton that generates Pascal's triangle modulo 2, Discr. Appl. Math. 105(2000), 1-38.
- Michael De Vlieger, Diagram montage showing 486 XOR-triangles T(n,k)>0 for 3 <= n <= 20.
- Michael De Vlieger, Large 50X25 Diagram montage showing 1250 XOR-triangles T(n,k)>0 for 3 <= n <= 24.
- Rémy Sigrist, Triangles illustrating the initial terms
- Rémy Sigrist, PARI program for A335061
- Index entries for sequences related to binary expansion of n
- Index entries for sequences related to cellular automata
- Index entries for sequences related to XOR-triangles
Programs
-
Mathematica
Table[Select[Range[0, 2^n - 1], Block[{k = #, w}, (Reverse /@ Transpose[#] /. -1 -> Nothing) == w &@ MapIndexed[PadRight[#, n, -1] &, Set[w, NestList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, PadLeft[IntegerDigits[k, 2], n], n - 1]]]] &], {n, 12}] // Flatten (* Michael De Vlieger, May 24 2020 *)
-
PARI
See Links section.
Comments