This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335065 #28 Mar 26 2021 06:32:31 %S A335065 6,9,12,20,28,30,34,42,56,58,65,72,75,90,110,126,132,156,182,201,205, %T A335065 210,217,224,240,246,254,258,272,294,306,342,344,380,384,399,420,436, %U A335065 462,498,502,506,513,516,520,552,579,600,650,657,680,690,702,730,756,786 %N A335065 Let m = d*q + r be the Euclidean division of m by d. The terms m of this sequence satisfy that d, q, r are consecutive positive integer terms in a geometric progression but not necessarily in that order. %C A335065 Inspired by the problem 141 of Project Euler (see link). %C A335065 There exist 3 possibilities to get such terms m that satisfy that d, q, r are consecutive positive integer terms in a geometric progression but not necessarily in that order: %C A335065 -> the geometric progression is r < q < d (A127629). %C A335065 -> the geometric progression is r < d < q (same terms of A127629). %C A335065 -> the geometric progression is q < r < d (A002378 \ {0,2} = oblong numbers >= 6). %C A335065 Some numbers have a geometric progression solution in the 3 cases (132, 1332, 6162, ...) [see examples]. %H A335065 Project Euler, <a href="https://projecteuler.net/problem=141">Problem 141: Investigating progressive numbers, n, which are also square</a> %e A335065 Examples with r < q < d, r < d < q, q < r <d: %e A335065 34 | 8 75 | 6 42 | 12 %e A335065 ---- ----- ----- %e A335065 2 | 4 , 3 | 12 , 6 | 3 %e A335065 The 3 possible divisions by 132: %e A335065 132 | 16 132 | 8 132 | 121 %e A335065 ----- ------ ------ %e A335065 4 | 8 , 4 | 16 , 11 | 1. %t A335065 mx = 800; Union@ Reap[ Do[y = x+1; While[(z = y^2/x) < mx, If[ IntegerQ@ z, If[(m = z y + x) <= mx, Sow@ m]; If[(m = z x + y) <= mx, Sow@ m]]; y++], {x, mx}]][[2, 1]] (* _Giovanni Resta_, May 24 2020 *) %o A335065 (PARI) isok(n) = {my(r, d); for (q=2, n-1, if (r=(n % q), d = n\q; if ((r*d == q^2) || (r*q == d^2) || (q*d == r^2), return (1));););} \\ _Michel Marcus_, May 25 2020 %Y A335065 Equals A127629 Union A002378 \ {0,2}. %Y A335065 Subsequences: A334185, A334186, A335064. %K A335065 nonn %O A335065 1,1 %A A335065 _Bernard Schott_, May 23 2020