A335077 a(n) sets a record for side length k of zero-triangle in a rotationally symmetrical XOR-triangle.
1, 11, 39, 543, 2391, 9559, 38231, 152919, 611671, 2446679, 9786711, 39146839, 156587351, 626349399, 2505397591, 10021590359, 40086361431, 160345445719, 641381782871, 2565527131479, 10262108525911, 41048434103639, 164193736414551, 656774945658199, 2627099782632791
Offset: 1
Keywords
Examples
XOR-triangles T(a(n)) for 2 <= n <= 5, with "." = 0, "@" = 1: a(4) = 543 a(3) = 39 @ . . . . @ @ @ @ @ a(2) = 11 @ . . . @ . . . . @ . . @ @ @ @ . . @ @ . . . @ . @ @ @ . @ . . @ . @ . @ . . @ @ . @ @ @ . @ @ @ @ @ . . @ . . @ . . . . @ @ . @ . . . @ @ . . @ . @ a(5) = 2391 @ @ . . @ . @ . @ . @ @ @ @ . @ @ @ @ @ @ @ . . @ @ . . . . . . @ . . @ . . . . . @ @ @ @ . . . . @ . . @ . . . @ @ @ @ . . @ . . @ . @ @ @ @ @ . . . @ . @ @ . a(6) = 9559 @ . . @ . @ . @ . @ . @ @ @ @ . @ @ @ @ @ @ @ @ @ . . @ @ . . . . . . . . @ . . @ . . . . . . . @ @ @ @ . . . . . . @ . . @ . . . . . @ @ @ @ . . . . @ . . @ . . . @ @ @ @ . . @ . . @ . @ @ @ @ @ . . . @ . @ @
Links
Programs
-
Mathematica
With[{s = Rest[Import["https://oeis.org/A334769/b334769.txt", "Data"][[All, -1]] ]}, Map[With[{w = NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &]}, If[Length@ # == 0, 1, Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, #] &@ ReplacePart[ConstantArray[0, Max@ #[[All, 1]]], Map[#1 -> #2 & @@ # &, #]]] &@ Tally@ Flatten@ Array[If[# == 1, Map[If[First@ # == 1, Nothing, Length@ #] &, Split@ w[[#]] ], Map[If[First@ # == -1, Length@ #, Nothing] &, Split[w[[#]] - Most@ w[[# - 1]] ] ]] &, Length@ w]] /. -Infinity -> 0 &, s[[1 ;; 30]] ] ] (* or *) Join[{1}, Array[2^(# + 1)*(2^# + 1) - 1 &, 4, 1], LinearRecurrence[{5, -4}, {2391, 9559}, 21]] (* or *) Rest@ CoefficientList[Series[(12 - 27 x)/(12 x^2 - 15 x + 3) - 56 x^4 - 112 x^3 - 28 x^2 - 10 x - 4, {x, 0, 25}], x] (* Michael De Vlieger, Jun 01 2020 *)
Formula
a(1) = 1; for 2 <= n <= 4, a(n) = A281482(2^(n - 2)); a(5) = 2391, a(6) = 9559, for n > 6, a(n) = 5*a(n-1) - 4*a(n-2).
From Alejandro J. Becerra Jr., Jun 01 2020 : (Start)
For n > 4, a(n) = (5/3) + (7/3)*4^n.
G.f.: (4 - 9*x)/(4*x^2 - 5*x + 1) - 56*x^4 - 112*x^3 - 28*x^2 - 10*x - 4. (End)
Comments