This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335078 #23 Nov 10 2020 06:39:09 %S A335078 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1, %T A335078 2,1,1,1,1,1,1,1,3,3,1,1,1,1,1,1,1,1,1,2,1,1,1,3,2,1,1,2,2,1,1,1,1,1, %U A335078 1,1,1,1,4,4,2,1,1,1,1,1,1,3,3,1,1,1,3,2,1 %N A335078 Irregular triangle read by rows: T(n, k) is the number of rotationally inequivalent Ferris Wheel distributions of Omega(n) colored balls of specification number n into precisely k boxes of the Ferris Wheel, with no box empty (0 < k <= Omega(n)). %D A335078 Richard Beekman, An Introduction to Number-Theoretic Combinatorics, Lulu Press 2017. %H A335078 Stefano Spezia, <a href="/A335078/b335078.txt">First 3500 rows of the triangle, flattened</a> %H A335078 Richard Beekman, <a href="https://www.researchgate.net/publication/341090354_A_General_Solution_of_the_Ferris_Wheel_Problem">A General Solution of the Ferris Wheel Problem</a>, ResearchGate, 2020. %F A335078 T(n, k) = (1/k)*Sum_{d divides k and n^(1/d) is a positive integer} phi(d)*A334996(n^(1/d), k/d) (see Theorem 4 in Beekman's article). %e A335078 The triangle T(n, k) begins %e A335078 n\k| 1 2 2 4 %e A335078 ---+-------------------- %e A335078 2 | 1 %e A335078 3 | 1 %e A335078 4 | 1 1 %e A335078 5 | 1 %e A335078 6 | 1 1 %e A335078 7 | 1 %e A335078 8 | 1 1 1 %e A335078 9 | 1 1 %e A335078 10 | 1 1 %e A335078 11 | 1 %e A335078 12 | 1 2 1 %e A335078 13 | 1 %e A335078 14 | 1 1 %e A335078 15 | 1 1 %e A335078 16 | 1 2 1 1 %e A335078 ... %t A335078 tau[n_,k_]:=If[n==1,1,Product[Binomial[Extract[Extract[FactorInteger[n],i],2]+k,k],{i,Length[FactorInteger[n]]}]]; (* A334997 *) %t A335078 Nd[n_, m_]:=Sum[(-1)^k*Binomial[m, k]*tau[n, m-k-1], {k,0,m-1}]; (* A334996 *) %t A335078 T[n_,k_]:=1/k*DivisorSum[k,EulerPhi[#]*Nd[n^(1/#),k/#]&,IntegerQ[n^(1/#)]&]; Table[T[n, m], {n,2,43}, {m,PrimeOmega[n]}]//Flatten %o A335078 (PARI) TT(n, k) = if (k==0, 1, sumdiv(n, d, TT(d, k-1))); \\ A334996 %o A335078 U(n, m) = sum(k=0, m-1, (-1)^k*binomial(m, k)*TT(n, m-k-1)); %o A335078 T(n, k) = my(p); (1/k)*sumdiv(k, d, if (ispower(n, d, &p), eulerphi(d)*U(p, k/d))); %o A335078 row(n) = vector(bigomega(n), k, T(n,k)); \\ _Michel Marcus_, May 25 2020 %Y A335078 Cf. A000012 (1st column), A001222 (Omega), A334996, A334997, A335079 (row sums). %K A335078 nonn,tabf %O A335078 2,18 %A A335078 _Stefano Spezia_, May 23 2020