cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335087 Row sums of A335436.

Original entry on oeis.org

1, 7, 34, 150, 628, 2540, 10024, 38840, 148368, 560368, 2096928, 7786592, 28726592, 105390272, 384788096, 1398978432, 5067403520, 18294707968, 65854095872, 236421150208, 846732997632, 3025927678976, 10792083499008, 38420157773824, 136547503083520, 484546494459904, 1716976084393984
Offset: 0

Views

Author

Oboifeng Dira, Sep 11 2020

Keywords

Comments

This sequence is also a composition of generating functions H(x) = G(F(x)), where G(x) = x/(1-4*x)^2 is the generating function of A002697 and F(x) = x*(1-x)/(1-2*x^2) is the generating function of 0, A016116*(-1)^n.

Examples

			For n = 4, a(4) = 8*a(3)-20*a(2)+16*a(1)-4*a(0) = 8*150-20*34+16*7-4*1 = 628.
		

Crossrefs

Composition of g.fs of A002697 and A016116.
Cf. A335436.

Programs

  • Maple
    f:=x->x*(1-x)/(1-2*x^2):g:=x->(x)/(1-4*x)^2:
    C:=n->coeff(series(g(f(x))/x,x,n+1),x,n): seq(C(n),n=0..30);

Formula

a(n) = 8*a(n-1)-20*a(n-2)+16*a(n-3)-4*a(n-4), a(0)=1, a(1)=7, a(2)=34, a(3)=150 for n>=4.
G.f.: (1-x)*(1-2*x^2)/(1-4*x+2*x^2)^2.
a(0)=1; a(n) = 2*n+1+Sum_{k=1..n}[(2+sqrt(2))^(k+1)-(2-sqrt(2))^(k+1)]*(2n-k+1)/(4*sqrt(2)), n>=1.
G.f.: G(F(x))/x where G(x) is g.f of A002697 and F(x) is g.f of 0,A016116*(-1)^n.