A335087 Row sums of A335436.
1, 7, 34, 150, 628, 2540, 10024, 38840, 148368, 560368, 2096928, 7786592, 28726592, 105390272, 384788096, 1398978432, 5067403520, 18294707968, 65854095872, 236421150208, 846732997632, 3025927678976, 10792083499008, 38420157773824, 136547503083520, 484546494459904, 1716976084393984
Offset: 0
Keywords
Examples
For n = 4, a(4) = 8*a(3)-20*a(2)+16*a(1)-4*a(0) = 8*150-20*34+16*7-4*1 = 628.
Links
- Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
- Index entries for linear recurrences with constant coefficients, signature (8,-20,16,-4).
Programs
-
Maple
f:=x->x*(1-x)/(1-2*x^2):g:=x->(x)/(1-4*x)^2: C:=n->coeff(series(g(f(x))/x,x,n+1),x,n): seq(C(n),n=0..30);
Formula
a(n) = 8*a(n-1)-20*a(n-2)+16*a(n-3)-4*a(n-4), a(0)=1, a(1)=7, a(2)=34, a(3)=150 for n>=4.
G.f.: (1-x)*(1-2*x^2)/(1-4*x+2*x^2)^2.
a(0)=1; a(n) = 2*n+1+Sum_{k=1..n}[(2+sqrt(2))^(k+1)-(2-sqrt(2))^(k+1)]*(2n-k+1)/(4*sqrt(2)), n>=1.
Comments