This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335102 #46 Jul 19 2024 11:34:10 %S A335102 0,0,0,1,5,12,1,35,40,8,1,126,140,20,0,1,330,228,60,12,0,1,715,644, %T A335102 112,0,0,0,1,1365,1168,208,0,0,0,0,1,2380,1512,216,54,54,0,0,0,1,3876, %U A335102 3360,480,0,0,0,0,0,0,1,5985,5280,660,0,0,0,0,0,0,0,1,8855,6144,864,264,24,0,0,0,0,0,0,12,12650 %N A335102 Irregular triangle read by rows: consider the regular n-gon defined in A007678. T(n,k) (n >= 1, k >= 4+2*t where t>=0) is the number of non-boundary vertices in the n-gon at which k polygons meet. %H A335102 B. Poonen and M. Rubinstein, <a href="https://arxiv.org/abs/math/9508209">The number of intersection points made by the diagonals of a regular polygon</a>, arXiv:math/9508209 [math.MG]; some typos in the published version are corrected in the revisions from 2006. %H A335102 Scott R. Shannon, <a href="/A335102/a335102.png">Image of the vertices for n=5</a>. %H A335102 Scott R. Shannon, <a href="/A335102/a335102_1.png">Image of the vertices for n=6</a>. %H A335102 Scott R. Shannon, <a href="/A335102/a335102_2.png">Image of the vertices for n=8</a>. %H A335102 Scott R. Shannon, <a href="/A335102/a335102_3.png">Image of the vertices for n=12</a>. %H A335102 Scott R. Shannon, <a href="/A335102/a335102_4.png">Image of the vertices for n=13</a>. %H A335102 Scott R. Shannon, <a href="/A335102/a335102_5.png">Image of the vertices for n=16</a>. %H A335102 Scott R. Shannon, <a href="/A335102/a335102_6.png">Image of the vertices for n=18</a>. %H A335102 Scott R. Shannon, <a href="/A335102/a335102_7.png">Image of the vertices for n=20</a>. %H A335102 Scott R. Shannon, <a href="/A335102/a335102_8.png">Image of the vertices for n=24</a>. %H A335102 Scott R. Shannon, <a href="/A335102/a335102_9.png">Image of the vertices for n=30</a>. %H A335102 <a href="/index/St#Stained">Index entries for sequences related to stained glass windows</a> %F A335102 If n = 2t+1 is odd then the n-th row has a single term, T(2t+1, 2t+4) = binomial(2t+1,4) (these values are given in A053126). %e A335102 Table begins: %e A335102 0; %e A335102 0; %e A335102 0; %e A335102 1; %e A335102 5; %e A335102 12, 1; %e A335102 35; %e A335102 40, 8, 1; %e A335102 126; %e A335102 140, 20, 0, 1; %e A335102 330; %e A335102 228, 60, 12, 0, 1; %e A335102 715; %e A335102 644, 112, 0, 0, 0, 1; %e A335102 1365; %e A335102 1168, 208, 0, 0, 0, 0, 1; %e A335102 2380; %e A335102 1512, 216, 54, 54, 0, 0, 0, 1; %e A335102 3876; %e A335102 3360, 480, 0, 0, 0, 0, 0, 0, 1; %e A335102 5985; %e A335102 5280, 660, 0, 0, 0, 0, 0, 0, 0, 1; %e A335102 8855; %e A335102 6144, 864, 264, 24, 0, 0, 0, 0, 0, 0, 1; %e A335102 12650; %e A335102 11284, 1196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A335102 17550; %e A335102 15680, 1568, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A335102 23751; %e A335102 13800, 2250, 420, 180, 120, 30, 0, 0, 0, 0, 0, 0, 0, 1; %e A335102 31465; %e A335102 28448, 2464, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A335102 40920; %e A335102 37264, 2992, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A335102 52360; %Y A335102 Columns give A292104, A101363 (2n-gon), A101364, A101365. %Y A335102 Row sums give A006561. %Y A335102 Cf. A007569, A007678, A053126, A292105, A333275. %K A335102 nonn,tabf %O A335102 1,5 %A A335102 _Scott R. Shannon_ and _N. J. A. Sloane_, May 23 2020