A335106 Irregular triangle T(n,k) is the number of times that prime(k) is the greatest part in a partition of n into prime parts; Triangle T(n,k), n>=0, 1 <= k <= max(1,A000720(A335285(n))), read by rows.
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 0, 2, 2, 1, 1, 1, 2, 2, 2, 0, 2, 3, 2, 1, 1, 1, 2, 3, 3, 1, 0, 3, 4, 3, 1, 1, 1, 2, 4, 4, 2, 1, 0, 3, 5, 5, 2, 1, 1, 1, 3, 5, 5, 3, 2, 0, 3, 6, 7, 3, 2, 1, 1, 1, 3, 7, 7, 4, 3, 1, 0, 4
Offset: 0
Examples
A000607(10) = 5 and the prime partitions of 10 are: (2,2,2,2,2), (2,2,3,3), (2,3,5), (5,5) and (3,7). Thus G(10) = {2,3,5,5,7}, and consequently row 10 is [1,1,2,1]. In the table below, for n >= 2, 0 is used to indicate when prime(k) is not in G(n) and is less than the greatest member of G(n), otherwise the entry for prime(k) not in G(n) is left empty. For n >= 2 the sum of entries in the n-th row is |G(n)| = A000607(n). Triangle T(n,k) begins: 0; 0; 1; 0, 1; 1; 0, 1, 1; 1, 1; 0, 1, 1, 1; 1, 1, 1; 0, 2, 1, 1; 1, 1, 2, 1; 0, 2, 2, 1, 1; 1, 2, 2, 2; 0, 2, 3, 2, 1, 1; 1, 2, 3, 3, 1; 0, 3, 4, 3, 1, 1; 1, 2, 4, 4, 2, 1; 0, 3, 5, 5, 2, 1, 1; ...
Links
- David James Sycamore, Prime Partition Trees
Crossrefs
Programs
-
Mathematica
Flatten@ Block[{nn = 22, t}, t = Block[{s = {Prime@ PrimePi@ nn}}, KeySort@ Merge[#, Identity] &@ Join[{0 -> {}, 1 -> {}}, Reap[Do[If[# <= nn, Sow[# -> s]; AppendTo[s, Last@ s], If[Last@ s == 2, s = DeleteCases[s, 2]; If[Length@ s == 0, Break[], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1]], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1] ] ] &@Total[s], {i, Infinity}]][[-1, -1]] ] ]; Array[Function[p, If[! IntegerQ@ First@ p, {0}, Array[Count[p, Prime@ #] &, PrimePi@ Max@ p]]]@ Map[Max, t[[#]]] &, Max@ Keys@ t]] (* Michael De Vlieger, May 23 2020 *) row[0]={0}; row[k_] := Join[If[OddQ@k, {0}, {}], Last /@ Tally@ Sort[ First /@ IntegerPartitions[k, All, Prime@ Range@ PrimePi@ k]]]; Join @@ Array[row, 20, 0] (* Giovanni Resta, May 31 2020 *)
Extensions
More terms from Giovanni Resta, May 31 2020
Comments