cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335110 a(n) = Sum_{k=0..n} (Stirling1(n,k) mod 2) * k.

This page as a plain text file.
%I A335110 #6 May 23 2020 23:56:58
%S A335110 0,1,3,5,6,8,18,22,12,14,30,34,36,40,84,92,24,26,54,58,60,64,132,140,
%T A335110 72,76,156,164,168,176,360,376,48,50,102,106,108,112,228,236,120,124,
%U A335110 252,260,264,272,552,568,144,148,300,308,312,320,648,664,336,344,696,712,720
%N A335110 a(n) = Sum_{k=0..n} (Stirling1(n,k) mod 2) * k.
%F A335110 G.f.: x * g(x) + (3/4) * x * (1 + x) * g'(x), where g(x) = Product_{k>=0} (1 + 2 * x^(2^(k + 1))).
%F A335110 a(n) = floor((3*n + 1)/2) * 2^(A000120(floor(n/2)) - 1).
%t A335110 Table[Sum[Mod[StirlingS1[n, k], 2] k, {k, 0, n}], {n, 0, 60}]
%t A335110 Table[Floor[(3 n + 1)/2] 2^(DigitCount[Floor[n/2], 2, 1] - 1), {n, 0, 60}]
%o A335110 (PARI) a(n) = sum(k=0, n, (stirling(n,k,1) % 2) * k); \\ _Michel Marcus_, May 23 2020
%Y A335110 Cf. A000120, A007494, A060632, A087748, A087755, A335063.
%K A335110 nonn
%O A335110 0,3
%A A335110 _Ilya Gutkovskiy_, May 23 2020