This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335122 #13 Sep 22 2023 08:58:26 %S A335122 1,2,1,1,3,1,2,1,1,1,4,1,3,2,2,1,1,2,1,1,1,1,5,1,4,2,3,1,1,3,1,2,2,1, %T A335122 1,1,2,1,1,1,1,1,6,1,5,2,4,1,1,4,3,3,1,2,3,1,1,1,3,2,2,2,1,1,2,2,1,1, %U A335122 1,1,2,1,1,1,1,1,1,7,1,6,2,5,1,1,5,3,4,1,2,4 %N A335122 Irregular triangle whose reversed rows are all integer partitions in graded reverse-lexicographic order. %C A335122 First differs from A036036 for partitions of 6. %C A335122 First differs from A334442 for partitions of 6. %C A335122 Also reversed partitions in reverse-colexicographic order. %H A335122 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a> %H A335122 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A335122 The sequence of all reversed partitions begins: %e A335122 () (1,1,3) (7) (8) %e A335122 (1) (1,2,2) (1,6) (1,7) %e A335122 (2) (1,1,1,2) (2,5) (2,6) %e A335122 (1,1) (1,1,1,1,1) (1,1,5) (1,1,6) %e A335122 (3) (6) (3,4) (3,5) %e A335122 (1,2) (1,5) (1,2,4) (1,2,5) %e A335122 (1,1,1) (2,4) (1,1,1,4) (1,1,1,5) %e A335122 (4) (1,1,4) (1,3,3) (4,4) %e A335122 (1,3) (3,3) (2,2,3) (1,3,4) %e A335122 (2,2) (1,2,3) (1,1,2,3) (2,2,4) %e A335122 (1,1,2) (1,1,1,3) (1,1,1,1,3) (1,1,2,4) %e A335122 (1,1,1,1) (2,2,2) (1,2,2,2) (1,1,1,1,4) %e A335122 (5) (1,1,2,2) (1,1,1,2,2) (2,3,3) %e A335122 (1,4) (1,1,1,1,2) (1,1,1,1,1,2) (1,1,3,3) %e A335122 (2,3) (1,1,1,1,1,1) (1,1,1,1,1,1,1) (1,2,2,3) %e A335122 We have the following tetrangle of reversed partitions: %e A335122 0 %e A335122 (1) %e A335122 (2)(11) %e A335122 (3)(12)(111) %e A335122 (4)(13)(22)(112)(1111) %e A335122 (5)(14)(23)(113)(122)(1112)(11111) %e A335122 (6)(15)(24)(114)(33)(123)(1113)(222)(1122)(11112)(111111) %t A335122 revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]]; %t A335122 Reverse/@Join@@Table[Sort[IntegerPartitions[n],revlexsort],{n,0,8}] %Y A335122 Row lengths are A000041. %Y A335122 The version for reversed partitions is A026792. %Y A335122 The version for colex instead of revlex is A026791. %Y A335122 The version for lex instead of revlex is A080576. %Y A335122 The non-reflected version is A080577. %Y A335122 The number of distinct parts is A115623. %Y A335122 Taking Heinz numbers gives A129129. %Y A335122 The version for compositions is A228351. %Y A335122 Partition lengths are A238966. %Y A335122 Partition maxima are A331581. %Y A335122 The length-sensitive version is A334442. %Y A335122 Lexicographically ordered partitions are A193073. %Y A335122 Partitions in colexicographic order are A211992. %Y A335122 Cf. A036036, A036037, A112798, A129129, A228531, A296774, A334301, A334302, A334435, A334436, A334438, A334439. %K A335122 nonn,tabf %O A335122 0,2 %A A335122 _Gus Wiseman_, May 24 2020