This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335123 #12 Sep 22 2023 08:58:32 %S A335123 0,1,2,1,3,1,1,4,2,1,1,1,5,2,1,1,1,1,1,6,3,2,1,2,1,1,1,1,1,1,7,3,2,1, %T A335123 2,1,1,1,1,1,1,1,1,1,1,8,4,3,2,1,2,2,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,9, %U A335123 4,3,2,1,3,2,1,2,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A335123 Minimum part of the n-th integer partition in Abramowitz-Stegun order (sum/length/lex); a(0) = 0. %H A335123 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a> %H A335123 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %F A335123 a(n) = A055396(A334433(n)). %e A335123 Triangle begins: %e A335123 0 %e A335123 1 %e A335123 2 1 %e A335123 3 1 1 %e A335123 4 2 1 1 1 %e A335123 5 2 1 1 1 1 1 %e A335123 6 3 2 1 2 1 1 1 1 1 1 %e A335123 7 3 2 1 2 1 1 1 1 1 1 1 1 1 1 %e A335123 8 4 3 2 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 %t A335123 Table[If[n==0,{0},Min/@Sort[IntegerPartitions[n]]],{n,0,8}] %Y A335123 Row lengths are A000041. %Y A335123 Partition minima of A334301. %Y A335123 The length of the same partition is A036043. %Y A335123 The Heinz number of the same partition is A334433. %Y A335123 The number of distinct parts in the same partition is A334440. %Y A335123 The maximum of the same partition is A334441. %Y A335123 The version for reversed partitions is A335124. %Y A335123 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036. %Y A335123 Partitions in (sum/length/revlex) order are A334439. %Y A335123 Cf. A026791, A049085, A103921, A124734, A185974, A193073, A334302, A334433. %K A335123 nonn,tabf %O A335123 0,3 %A A335123 _Gus Wiseman_, May 24 2020