This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335124 #9 Sep 22 2023 08:57:20 %S A335124 0,1,2,1,3,1,1,4,1,2,1,1,5,1,2,1,1,1,1,6,1,2,3,1,1,2,1,1,1,1,7,1,2,3, %T A335124 1,1,1,2,1,1,1,1,1,1,1,8,1,2,3,4,1,1,1,2,2,1,1,1,1,2,1,1,1,1,1,1,1,9, %U A335124 1,2,3,4,1,1,1,1,2,2,3,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1 %N A335124 Minimum part of the n-th reversed integer partition in Abramowitz-Stegun order; a(0) = 0. %C A335124 The ordering of reversed partitions is first by sum, then by length, and finally lexicographically. The version for non-reversed partitions is A335123. %H A335124 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a> %H A335124 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %F A335124 a(n) = A055396(A185974(n)). %e A335124 Triangle begins: %e A335124 0 %e A335124 1 %e A335124 2 1 %e A335124 3 1 1 %e A335124 4 1 2 1 1 %e A335124 5 1 2 1 1 1 1 %e A335124 6 1 2 3 1 1 2 1 1 1 1 %e A335124 7 1 2 3 1 1 1 2 1 1 1 1 1 1 1 %e A335124 8 1 2 3 4 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 %t A335124 Table[If[n==0,{0},Min/@Sort[Reverse/@IntegerPartitions[n]]],{n,0,8}] %Y A335124 Row lengths are A000041. %Y A335124 Partition minima of A036036. %Y A335124 The length of the same partition is A036043. %Y A335124 The maximum of the same partition is A049085. %Y A335124 The number of distinct parts in the same partition is A103921. %Y A335124 The Heinz number of the same partition is A185974. %Y A335124 The version for non-reversed partitions is A335123. %Y A335124 Lexicographically ordered reversed partitions are A026791. %Y A335124 Partitions in (sum/length/colex) order are A036037. %Y A335124 Partitions in opposite Abramowitz-Stegun (sum/length/revlex) order are A334439. %Y A335124 Cf. A124734, A193073, A334301, A334302, A334433, A334435. %K A335124 nonn,tabf %O A335124 0,3 %A A335124 _Gus Wiseman_, May 24 2020