This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335126 #9 Jul 03 2020 06:58:23 %S A335126 3,5,7,10,11,13,14,17,19,21,22,23,26,28,29,31,33,34,37,38,39,41,43,44, %T A335126 46,47,51,52,53,55,57,58,59,61,62,65,66,67,68,69,71,73,74,76,78,79,82, %U A335126 83,85,86,87,88,89,91,92,93,94,95,97,101,102,103,104,106 %N A335126 A multiset whose multiplicities are the prime indices of n is inseparable. %C A335126 A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts. %C A335126 A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}. %e A335126 The sequence of terms together with the corresponding multisets begins: %e A335126 3: {1,1} %e A335126 5: {1,1,1} %e A335126 7: {1,1,1,1} %e A335126 10: {1,1,1,2} %e A335126 11: {1,1,1,1,1} %e A335126 13: {1,1,1,1,1,1} %e A335126 14: {1,1,1,1,2} %e A335126 17: {1,1,1,1,1,1,1} %e A335126 19: {1,1,1,1,1,1,1,1} %e A335126 21: {1,1,1,1,2,2} %e A335126 22: {1,1,1,1,1,2} %e A335126 23: {1,1,1,1,1,1,1,1,1} %e A335126 26: {1,1,1,1,1,1,2} %e A335126 28: {1,1,1,1,2,3} %e A335126 29: {1,1,1,1,1,1,1,1,1,1} %t A335126 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A335126 Select[Range[100],Select[Permutations[nrmptn[#]],!MatchQ[#,{___,x_,x_,___}]&]=={}&] %Y A335126 The complement is A335127. %Y A335126 Anti-run compositions are A003242. %Y A335126 Anti-runs are ranked by A333489. %Y A335126 Separable partitions are A325534. %Y A335126 Inseparable partitions are A325535. %Y A335126 Separable factorizations are A335434. %Y A335126 Inseparable factorizations are A333487. %Y A335126 Separable partitions are ranked by A335433. %Y A335126 Inseparable partitions are ranked by A335448. %Y A335126 Anti-run permutations of prime indices are A335452. %Y A335126 Patterns contiguously matched by compositions are A335457. %Y A335126 Cf. A025487, A056239, A106351, A112798, A114938, A181819, A181821, A278990, A292884, A335407, A335489, A335516, A335838. %K A335126 nonn %O A335126 1,1 %A A335126 _Gus Wiseman_, Jul 01 2020