cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335126 A multiset whose multiplicities are the prime indices of n is inseparable.

This page as a plain text file.
%I A335126 #9 Jul 03 2020 06:58:23
%S A335126 3,5,7,10,11,13,14,17,19,21,22,23,26,28,29,31,33,34,37,38,39,41,43,44,
%T A335126 46,47,51,52,53,55,57,58,59,61,62,65,66,67,68,69,71,73,74,76,78,79,82,
%U A335126 83,85,86,87,88,89,91,92,93,94,95,97,101,102,103,104,106
%N A335126 A multiset whose multiplicities are the prime indices of n is inseparable.
%C A335126 A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
%C A335126 A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
%e A335126 The sequence of terms together with the corresponding multisets begins:
%e A335126    3: {1,1}
%e A335126    5: {1,1,1}
%e A335126    7: {1,1,1,1}
%e A335126   10: {1,1,1,2}
%e A335126   11: {1,1,1,1,1}
%e A335126   13: {1,1,1,1,1,1}
%e A335126   14: {1,1,1,1,2}
%e A335126   17: {1,1,1,1,1,1,1}
%e A335126   19: {1,1,1,1,1,1,1,1}
%e A335126   21: {1,1,1,1,2,2}
%e A335126   22: {1,1,1,1,1,2}
%e A335126   23: {1,1,1,1,1,1,1,1,1}
%e A335126   26: {1,1,1,1,1,1,2}
%e A335126   28: {1,1,1,1,2,3}
%e A335126   29: {1,1,1,1,1,1,1,1,1,1}
%t A335126 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A335126 Select[Range[100],Select[Permutations[nrmptn[#]],!MatchQ[#,{___,x_,x_,___}]&]=={}&]
%Y A335126 The complement is A335127.
%Y A335126 Anti-run compositions are A003242.
%Y A335126 Anti-runs are ranked by A333489.
%Y A335126 Separable partitions are A325534.
%Y A335126 Inseparable partitions are A325535.
%Y A335126 Separable factorizations are A335434.
%Y A335126 Inseparable factorizations are A333487.
%Y A335126 Separable partitions are ranked by A335433.
%Y A335126 Inseparable partitions are ranked by A335448.
%Y A335126 Anti-run permutations of prime indices are A335452.
%Y A335126 Patterns contiguously matched by compositions are A335457.
%Y A335126 Cf. A025487, A056239, A106351, A112798, A114938, A181819, A181821, A278990, A292884, A335407, A335489, A335516, A335838.
%K A335126 nonn
%O A335126 1,1
%A A335126 _Gus Wiseman_, Jul 01 2020