This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335127 #9 Jul 03 2020 06:58:37 %S A335127 1,2,4,6,8,9,12,15,16,18,20,24,25,27,30,32,35,36,40,42,45,48,49,50,54, %T A335127 56,60,63,64,70,72,75,77,80,81,84,90,96,98,99,100,105,108,110,112,120, %U A335127 121,125,126,128,132,135,140,143,144,147,150,154,160,162,165 %N A335127 A multiset whose multiplicities are the prime indices of n is separable. %C A335127 A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts. %C A335127 A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}. %e A335127 The sequence together with the corresponding multisets begins: %e A335127 1: {} %e A335127 2: {1} %e A335127 4: {1,2} %e A335127 6: {1,1,2} %e A335127 8: {1,2,3} %e A335127 9: {1,1,2,2} %e A335127 12: {1,1,2,3} %e A335127 15: {1,1,1,2,2} %e A335127 16: {1,2,3,4} %e A335127 18: {1,1,2,2,3} %e A335127 20: {1,1,1,2,3} %e A335127 24: {1,1,2,3,4} %e A335127 25: {1,1,1,2,2,2} %e A335127 27: {1,1,2,2,3,3} %e A335127 30: {1,1,1,2,2,3} %t A335127 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A335127 Select[Range[100],Select[Permutations[nrmptn[#]],!MatchQ[#,{___,x_,x_,___}]&]!={}&] %Y A335127 The complement is A335126. %Y A335127 Anti-run compositions are A003242. %Y A335127 Anti-runs are ranked by A333489. %Y A335127 Separable partitions are A325534. %Y A335127 Inseparable partitions are A325535. %Y A335127 Separable factorizations are A335434. %Y A335127 Inseparable factorizations are A333487. %Y A335127 Separable partitions are ranked by A335433. %Y A335127 Inseparable partitions are ranked by A335448. %Y A335127 Anti-run permutations of prime indices are A335452. %Y A335127 Patterns contiguously matched by compositions are A335457. %Y A335127 Cf. A056239, A106351, A112798, A114938, A292884, A335489, A335516, A335838. %K A335127 nonn %O A335127 1,2 %A A335127 _Gus Wiseman_, Jul 02 2020