A335132 Numbers whose binary expansion generates 3-fold rotationally symmetric EQ-triangles.
0, 1, 3, 5, 7, 9, 15, 17, 31, 33, 63, 65, 73, 119, 127, 129, 255, 257, 297, 349, 373, 395, 419, 471, 511, 513, 585, 653, 709, 827, 883, 951, 1023, 1025, 1193, 1879, 2047, 2049, 2145, 2225, 2257, 3887, 3919, 3999, 4095, 4097, 4321, 4681, 4777, 5501, 5533, 5941
Offset: 1
Examples
For 349: - the binary expansion of 349 is "101011101", - the corresponding EQ-triangle is (with dots instead of 0's for clarity): 1 . 1 . 1 1 1 . 1 . . . . 1 1 . . 1 1 1 . 1 . 1 1 1 . . . . 1 . 1 1 1 . . 1 1 1 . 1 . . 1 - this triangle has 3-fold rotational symmetry, so 349 belongs to this sequence.
Links
- Rémy Sigrist, Illustration of initial terms
- Wikipedia, Logical equality
- Index entries for sequences related to binary expansion of n
Programs
-
PARI
is(n) = { my (b=binary(n), p=b); for (k=1, #b, if (b[k]!=p[#p], return (0)); if (p[1]!=b[#b+1-k], return (0)); p = vector(#p-1, k, p[k]==p[k+1]); ); return (1); }
Comments