This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335133 #14 Jun 22 2020 07:53:05 %S A335133 0,1,2,3,4,5,6,7,8,9,11,10,13,12,14,15,16,17,18,19,22,23,20,21,26,27, %T A335133 24,25,28,29,30,31,32,33,35,34,36,37,39,38,44,45,47,46,40,41,43,42,53, %U A335133 52,54,55,49,48,50,51,57,56,58,59,61,60,62,63,64,65,66,67 %N A335133 Binary interpretation of the left diagonal of the EQ-triangle with first row generated from the binary expansion of n, with most significant bit given by first row. %C A335133 For any nonnegative number n, the EQ-triangle for n is built by taking as first row the binary expansion of n (without leading zeros), having each entry in the subsequent rows be the EQ of the two values above it (a "1" indicates that these two values are equal, a "0" indicates that these values are different). %C A335133 This sequence is a self-inverse permutation of the nonnegative numbers. %H A335133 Rémy Sigrist, <a href="/A335133/b335133.txt">Table of n, a(n) for n = 0..8192</a> (n = 0..2^13) %H A335133 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A335133 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A335133 a(floor(n/2)) = floor(a(n)/2). %F A335133 abs(a(2*n+1) - a(2*n)) = 1. %F A335133 a(2^k) = 2^k for any k >= 0. %F A335133 a(2^k+1) = 2^k+1 for any k >= 0. %F A335133 a(2^k-1) = 2^k-1 for any k >= 0. %F A335133 Apparently, a(n) + A334727(n) = A055010(A070939(n)) for any n > 0. %e A335133 For n = 42: %e A335133 - the binary representation of 42 is "101010", %e A335133 - the corresponding EQ-triangle is: %e A335133 1 0 1 0 1 0 %e A335133 0 0 0 0 0 %e A335133 1 1 1 1 %e A335133 1 1 1 %e A335133 1 1 %e A335133 1 %e A335133 - the bits on the left diagonal are: 1, 0, 1, 1, 1, 1, %e A335133 - so a(42) = 2^5 + 2^3 + 2^2 + 2^1 + 2^0 = 47. %o A335133 (PARI) a(n) = { %o A335133 my (b=binary(n), v=0); %o A335133 forstep (x=#b-1, 0, -1, %o A335133 if (b[1], v+=2^x); %o A335133 b=vector(#b-1, k, b[k]==b[k+1]) %o A335133 ); %o A335133 return (v) %o A335133 } %Y A335133 Cf. A055010, A070939, A279645, A334727 (XOR variant). %K A335133 nonn,look,base %O A335133 0,3 %A A335133 _Rémy Sigrist_, May 24 2020