cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A335141 Numbers that are both unitary pseudoperfect (A293188) and nonunitary pseudoperfect (A327945).

Original entry on oeis.org

840, 2940, 7260, 9240, 10140, 10920, 13860, 14280, 15960, 16380, 17160, 18480, 19320, 20580, 21420, 21840, 22440, 23100, 23940, 24024, 24360, 25080, 26040, 26520, 27300, 28560, 29640, 30360, 30870, 31080, 31920, 32340, 34440, 34650, 35700, 35880, 36120, 36960
Offset: 1

Views

Author

Amiram Eldar, May 25 2020

Keywords

Comments

All the terms are nonsquarefree (since squarefree numbers do not have nonunitary divisors).
All the terms are either 3-abundant numbers (A068403) or 3-perfect numbers (A005820). None of the 6 known 3-perfect numbers are terms of this sequence. If there is a term that is 3-perfect, it is also a unitary perfect (A002827) and a nonunitary perfect (A064591).

Examples

			840 is a term since its aliquot unitary divisors are {1, 3, 5, 7, 8, 15, 21, 24, 35, 40, 56, 105, 120, 168, 280} and 1 + 5 + 7 + 8 + 15 + 35 + 40 + 56 + 105 + 120 + 168 + 280 = 840, and its nonunitary divisors are {2, 4, 6, 10, 12, 14, 20, 28, 30, 42, 60, 70, 84, 140, 210, 420} and 70 + 140 + 210 + 420 = 840.
		

Crossrefs

Intersection of A293188 and A327945.
Subsequence of A335140.

Programs

  • Mathematica
    pspQ[n_] := Module[{d = Divisors[n], ud, nd, x}, ud = Select[d, CoprimeQ[#, n/#] &]; nd = Complement[d, ud]; ud = Most[ud]; Plus @@ ud >= n && Plus @@ nd >= n && SeriesCoefficient[Series[Product[1 + x^ud[[i]], {i, Length[ud]}], {x, 0, n}], n] > 0 && SeriesCoefficient[Series[Product[1 + x^nd[[i]], {i, Length[nd]}], {x, 0, n}], n] > 0]; Select[Range[10^4], pspQ]

A335201 Unitary Zumkeller numbers (A290466) that are not squarefree.

Original entry on oeis.org

60, 90, 150, 294, 420, 630, 660, 726, 750, 780, 840, 924, 990, 1014, 1020, 1050, 1092, 1140, 1170, 1380, 1386, 1428, 1470, 1530, 1596, 1638, 1650, 1710, 1734, 1740, 1860, 1890, 1950, 2058, 2070, 2142, 2166, 2220, 2460, 2550, 2580, 2610, 2790, 2820, 2850, 2940
Offset: 1

Views

Author

Amiram Eldar, May 26 2020

Keywords

Comments

Zumkeller numbers (A083207) that are squarefree (A005117) are also unitary Zumkeller numbers (A290466), since all of their divisors are unitary.
First differs from A335140 at n = 39.

Examples

			60 is a term since it is nonsquarefree, and its unitary divisors, {1, 3, 4, 5, 12, 15, 20, 60}, can be partitioned into 2 disjoint sets whose sum is equal: 1 + 3 + 4 + 5 + 12 + 15 + 20 = 60.
		

Crossrefs

Intersection of A013929 and A290466.

Programs

  • Mathematica
    uzQ[n_] :=  Module[{d = Select[Divisors[n], CoprimeQ[#, n/#] &], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; Select[Range[3000], !SquareFreeQ[#] && uzQ[#] &]
Showing 1-2 of 2 results.