cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335144 Nonunitary Zumkeller numbers (A335142) whose set of nonunitary divisors can be partitioned into two disjoint sets of equal sum in a record number of ways.

Original entry on oeis.org

24, 96, 180, 216, 240, 360, 480, 720, 1080, 1440, 2160, 2880, 4320, 5040, 7560, 10080, 15120, 20160, 25200, 30240, 45360, 50400, 60480, 75600, 100800, 110880, 151200, 221760, 277200, 302400, 332640, 453600, 498960, 554400, 665280, 831600, 1108800, 1330560
Offset: 1

Views

Author

Amiram Eldar, May 25 2020

Keywords

Comments

The corresponding record values are 1, 3, 7, 13, 17, 102, 140, ... (see the link for more values).

Examples

			24 is the first term since it is the least nonunitary Zumkeller number, and its nonunitary divisors, {2, 4, 6, 12}, can be partitioned in a single way: 2 + 4 + 6 = 12. The next nonunitary Zumkeller number with more than one partition is 96, whose nonunitary divisors, {2, 4, 6, 8, 12, 16, 24, 48}, can be partitioned in 3 ways: 2 + 4 + 6 + 8 + 16 + 24 = 12 + 48, 2 + 6 + 12 + 16 + 24 = 4 + 8 + 48, and 8 + 12 + 16 + 24 = 2 + 4 + 6 + 48.
		

Crossrefs

The nonunitary version of A083212.
Subsequence of A335142.
Cf. A335143.

Programs

  • Mathematica
    nuz[n_] := Module[{d = Select[Divisors[n], GCD[#, n/#] > 1 &], sum, x}, sum = Plus @@ d; If[sum < 1 || OddQ[sum], 0, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]]/2]]; nuzm = 0; s = {}; Do[nuz1 = nuz[n]; If[nuz1 > nuzm, nuzm = nuz1; AppendTo[s, n]], {n, 1, 8000}]; s