cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335159 a(n) = nim-product of 2^2 and 2^n.

This page as a plain text file.
%I A335159 #22 Dec 27 2024 18:51:43
%S A335159 4,8,6,11,64,128,96,176,1024,2048,1536,2816,16384,32768,24576,45056,
%T A335159 262144,524288,393216,720896,4194304,8388608,6291456,11534336,
%U A335159 67108864,134217728,100663296,184549376,1073741824,2147483648,1610612736,2952790016,17179869184
%N A335159 a(n) = nim-product of 2^2 and 2^n.
%H A335159 Rémy Sigrist, <a href="/A335159/b335159.txt">Table of n, a(n) for n = 0..1000</a>
%H A335159 J. H. Conway, <a href="https://doi.org/10.1016/0012-365X(90)90008-6">Integral lexicographic codes</a>, Discrete Mathematics 83.2-3 (1990): 219-235. See Table 4.
%F A335159 Conjectures from _Colin Barker_, Jun 11 2020: (Start)
%F A335159 G.f.: (4 + 8*x + 6*x^2 + 11*x^3) / ((1 - 2*x)*(1 + 2*x)*(1 + 4*x^2)).
%F A335159 a(n) = 16*a(n-4) for n>3.
%F A335159 (End)
%Y A335159 Row 2 of array in A223541.
%K A335159 nonn
%O A335159 0,1
%A A335159 _N. J. A. Sloane_, Jun 08 2020