A335163 Nim n-th power of 4.
1, 4, 6, 14, 5, 2, 8, 11, 7, 10, 3, 12, 13, 9, 15, 1, 4, 6, 14, 5, 2, 8, 11, 7, 10, 3, 12, 13, 9, 15, 1, 4, 6, 14, 5, 2, 8, 11, 7, 10, 3, 12, 13, 9, 15, 1, 4, 6, 14, 5, 2, 8, 11, 7, 10, 3, 12, 13, 9, 15, 1, 4, 6, 14, 5, 2, 8, 11, 7, 10, 3, 12, 13, 9, 15, 1, 4
Offset: 0
Keywords
Links
- J. H. Conway, Integral lexicographic codes, Discrete Mathematics 83.2-3 (1990): 219-235. See Table 3.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
Crossrefs
A row of the array in A335162.
Programs
-
PARI
Vec((1 + 4*x + 6*x^2 + 14*x^3 + 5*x^4 + 2*x^5 + 8*x^6 + 11*x^7 + 7*x^8 + 10*x^9 + 3*x^10 + 12*x^11 + 13*x^12 + 9*x^13 + 15*x^14) / (1 - x^15) + O(x^80)) \\ Colin Barker, Jun 16 2020
-
PARI
a(n)=[1, 4, 6, 14, 5, 2, 8, 11, 7, 10, 3, 12, 13, 9, 15][n%15+1]; \\ Joerg Arndt, Jun 16 2020
Formula
a(n+15) = a(n). - Rémy Sigrist, Jun 12 2020
G.f.: (1 + 4*x + 6*x^2 + 14*x^3 + 5*x^4 + 2*x^5 + 8*x^6 + 11*x^7 + 7*x^8 + 10*x^9 + 3*x^10 + 12*x^11 + 13*x^12 + 9*x^13 + 15*x^14) / (1 - x^15). - Colin Barker, Jun 16 2020
Extensions
More terms from Rémy Sigrist, Jun 12 2020