cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335196 Nonunitary admirable numbers: numbers k such that there is a nonunitary divisor d of k such that nusigma(k) - 2*d = k, where nusigma is the sum of nonunitary divisors function (A048146).

Original entry on oeis.org

48, 80, 96, 108, 120, 160, 168, 180, 192, 216, 224, 252, 264, 280, 300, 312, 320, 336, 352, 360, 384, 396, 408, 416, 432, 448, 456, 468, 480, 504, 528, 540, 552, 560, 600, 612, 624, 640, 672, 684, 696, 704, 720, 744, 756, 768, 792, 816, 828, 832, 840, 864, 880
Offset: 1

Views

Author

Amiram Eldar, May 26 2020

Keywords

Comments

Equivalently, numbers that are equal to the sum of their nonunitary divisors, with one of them taken with a minus sign.

Examples

			48 is a term since 48 = 2 - 4 + 6 + 8 + 12 + 24 is the sum of its nonunitary divisors with one of them, 4, taken with a minus sign.
		

Crossrefs

The nonunitary version of A111592.
Subsequence of A064597.
Similar sequences: A328328, A334972, A334974.
Cf. A048146.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; nuAdmQ[n_] := (ab = nusigma[n] - n) > 0 && EvenQ[ab] && ab/2 < n && !CoprimeQ[ab/2, 2*n/ab]; Select[Range[1000], nuAdmQ]