A335196 Nonunitary admirable numbers: numbers k such that there is a nonunitary divisor d of k such that nusigma(k) - 2*d = k, where nusigma is the sum of nonunitary divisors function (A048146).
48, 80, 96, 108, 120, 160, 168, 180, 192, 216, 224, 252, 264, 280, 300, 312, 320, 336, 352, 360, 384, 396, 408, 416, 432, 448, 456, 468, 480, 504, 528, 540, 552, 560, 600, 612, 624, 640, 672, 684, 696, 704, 720, 744, 756, 768, 792, 816, 828, 832, 840, 864, 880
Offset: 1
Keywords
Examples
48 is a term since 48 = 2 - 4 + 6 + 8 + 12 + 24 is the sum of its nonunitary divisors with one of them, 4, taken with a minus sign.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; nuAdmQ[n_] := (ab = nusigma[n] - n) > 0 && EvenQ[ab] && ab/2 < n && !CoprimeQ[ab/2, 2*n/ab]; Select[Range[1000], nuAdmQ]
Comments