cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335197 Infinitary Zumkeller numbers: numbers whose set of infinitary divisors can be partitioned into two disjoint sets of equal sum.

Original entry on oeis.org

6, 24, 30, 40, 42, 54, 56, 60, 66, 70, 72, 78, 88, 90, 96, 102, 104, 114, 120, 138, 150, 168, 174, 186, 210, 216, 222, 246, 258, 264, 270, 280, 282, 294, 312, 318, 330, 354, 360, 366, 378, 384, 390, 402, 408, 420, 426, 438, 440, 456, 462, 474, 480, 486, 498, 504
Offset: 1

Views

Author

Amiram Eldar, May 26 2020

Keywords

Examples

			6 is a term since its set of infinitary divisors, {1, 2, 3, 6}, can be partitioned into the two disjoint sets, {1, 2, 3} and {6}, whose sum is equal: 1 + 2 + 3 = 6.
		

Crossrefs

The infinitary version of A083207.
Subsequence of A129656.

Programs

  • Mathematica
    infdivs[n_] := If[n == 1, {1}, Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; infZumQ[n_] := Module[{d = infdivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; Select[Range[500], infZumQ] (* after Michael De Vlieger at A077609 *)