A335198 Infinitary Zumkeller numbers (A335197) whose number of divisors is not a power of 2.
60, 72, 90, 96, 150, 294, 360, 420, 480, 486, 504, 540, 600, 630, 660, 672, 726, 756, 780, 792, 864, 924, 936, 960, 990, 1014, 1020, 1050, 1056, 1092, 1120, 1140, 1152, 1170, 1176, 1188, 1224, 1248, 1344, 1350, 1368, 1380, 1386, 1400, 1428, 1440, 1470, 1500, 1530
Offset: 1
Keywords
Examples
72 is a term since its set of infinitary divisors, {1, 2, 4, 8, 9, 18, 36, 72}, can be partitioned into the two disjoint sets, {1, 2, 72} and {4, 8, 9, 18, 36}, whose sum is equal: 1 + 2 + 72 = 4 + 8 + 9 + 18 + 36 = 75.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
infdivs[n_] := If[n == 1, {1}, Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; infZumQ[n_] := Module[{d = infdivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; pow2Q[n_] := n == 2^IntegerExponent[n, 2]; Select[Range[1500], ! pow2Q[DivisorSigma[0, #]] && infZumQ[#] &] (* after Michael De Vlieger at A077609 *)
Comments