cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335198 Infinitary Zumkeller numbers (A335197) whose number of divisors is not a power of 2.

Original entry on oeis.org

60, 72, 90, 96, 150, 294, 360, 420, 480, 486, 504, 540, 600, 630, 660, 672, 726, 756, 780, 792, 864, 924, 936, 960, 990, 1014, 1020, 1050, 1056, 1092, 1120, 1140, 1152, 1170, 1176, 1188, 1224, 1248, 1344, 1350, 1368, 1380, 1386, 1400, 1428, 1440, 1470, 1500, 1530
Offset: 1

Views

Author

Amiram Eldar, May 26 2020

Keywords

Comments

Zumkeller numbers (A083207) whose number of divisors is a power of 2 (A036537) are also infinitary Zumkeller numbers (A335197), since all of their divisors are infinitary.

Examples

			72 is a term since its set of infinitary divisors, {1, 2, 4, 8, 9, 18, 36, 72}, can be partitioned into the two disjoint sets, {1, 2, 72} and {4, 8, 9, 18, 36}, whose sum is equal: 1 + 2 + 72 = 4 + 8 + 9 + 18 + 36 = 75.
		

Crossrefs

Subsequence of A335197.

Programs

  • Mathematica
    infdivs[n_] := If[n == 1, {1}, Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; infZumQ[n_] := Module[{d = infdivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; pow2Q[n_] := n == 2^IntegerExponent[n, 2]; Select[Range[1500], ! pow2Q[DivisorSigma[0, #]] && infZumQ[#] &] (* after Michael De Vlieger at A077609 *)