A335201 Unitary Zumkeller numbers (A290466) that are not squarefree.
60, 90, 150, 294, 420, 630, 660, 726, 750, 780, 840, 924, 990, 1014, 1020, 1050, 1092, 1140, 1170, 1380, 1386, 1428, 1470, 1530, 1596, 1638, 1650, 1710, 1734, 1740, 1860, 1890, 1950, 2058, 2070, 2142, 2166, 2220, 2460, 2550, 2580, 2610, 2790, 2820, 2850, 2940
Offset: 1
Keywords
Examples
60 is a term since it is nonsquarefree, and its unitary divisors, {1, 3, 4, 5, 12, 15, 20, 60}, can be partitioned into 2 disjoint sets whose sum is equal: 1 + 3 + 4 + 5 + 12 + 15 + 20 = 60.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
uzQ[n_] := Module[{d = Select[Divisors[n], CoprimeQ[#, n/#] &], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; Select[Range[3000], !SquareFreeQ[#] && uzQ[#] &]
Comments