A335216 Bi-unitary Zumkeller numbers (A335215) that are not exponentially odd numbers (A268335).
48, 60, 72, 80, 90, 150, 162, 192, 240, 288, 294, 320, 336, 360, 420, 432, 448, 504, 528, 540, 560, 576, 600, 624, 630, 648, 660, 720, 726, 756, 768, 780, 792, 800, 810, 816, 832, 880, 912, 924, 936, 960, 990, 1008, 1014, 1020, 1040, 1050, 1092, 1104, 1134, 1140
Offset: 1
Keywords
Examples
48 is a term since it is not exponentially odd number (48 = 2^4 * 3 and 4 is even), and its set of bi-unitary divisors, {1, 2, 3, 6, 8, 16, 24, 48}, can be partitioned into 2 disjoint sets, whose sum is equal: 1 + 2 + 3 + 8 + 16 + 24 = 6 + 48.
Programs
-
Mathematica
uDivs[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; bDivs[n_] := Select[Divisors[n], Last @ Intersection[uDivs[#], uDivs[n/#]] == 1 &]; bzQ[n_] := Module[{d = bDivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; expOddQ[n_] := AllTrue[Last /@ FactorInteger[n], OddQ]; Select[Range[1000], !expOddQ[#] && bzQ[#] &]
Comments