cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335218 Exponential Zumkeller numbers: numbers whose exponential divisors can be partitioned into two disjoint subsets of equal sum.

Original entry on oeis.org

36, 180, 252, 396, 468, 612, 684, 828, 900, 1044, 1116, 1260, 1332, 1476, 1548, 1692, 1764, 1800, 1908, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2988, 3060, 3204, 3276, 3420, 3492, 3600, 3636, 3708, 3852, 3924, 4068, 4140, 4284, 4356, 4500, 4572, 4716, 4788, 4900
Offset: 1

Views

Author

Amiram Eldar, May 27 2020

Keywords

Comments

First differs from A318100 at n = 49: 4900 is a term that is not an exponential pseudoperfect number.

Examples

			36 is a term since its exponential divisors, {6, 12, 18, 36}, can be partitioned into 2 disjoint sets whose sum is equal: 6 + 12 + 18 = 36.
		

Crossrefs

The exponential version of A083207.
Subsequence of A129575.
A054979 is a subsequence.

Programs

  • Mathematica
    dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; eDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expDivQ[n, #] &]]; ezQ[n_] := Module[{d = eDivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; Select[Range[10^4], ezQ]