This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335219 #18 Sep 08 2023 22:37:03 %S A335219 36,180,252,396,468,612,684,828,1044,1116,1260,1332,1476,1548,1692, %T A335219 1800,1908,1980,2124,2196,2340,2412,2556,2628,2700,2772,2844,2988, %U A335219 3060,3204,3276,3420,3492,3636,3708,3852,3924,4068,4140,4284,4572,4716,4788,4900,4932 %N A335219 Exponential Zumkeller numbers (A335218) whose set of exponential divisors can be partitioned into two disjoint sets of equal sum in a single way. %C A335219 Differs from A054979 first at a(44), since 4900 is in this sequence but not in A054979. - _R. J. Mathar_, Jun 02 2020 %H A335219 Amiram Eldar, <a href="/A335219/b335219.txt">Table of n, a(n) for n = 1..10000</a> %e A335219 36 is a term since there is a single way in which its exponential divisors, {6, 12, 18, 36} can be partitioned into 2 disjoint sets whose sum is equal: 6 + 12 + 18 = 36. %t A335219 dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; eDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expDivQ[n, #] &]]; ezQ[n_] := Module[{d = eDivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 2]]; Select[Range[10^4], ezQ] %Y A335219 The exponential of A083209. %Y A335219 Subsequence of A335218. %Y A335219 Cf. A335143, A335199, A335202. %K A335219 nonn %O A335219 1,1 %A A335219 _Amiram Eldar_, May 27 2020