cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335220 Exponential Zumkeller numbers (A335218) whose set of exponential divisors can be partitioned into two disjoint sets of equal sum in a record number of ways.

This page as a plain text file.
%I A335220 #5 May 27 2020 14:20:48
%S A335220 36,900,3600,22500,44100,176400,705600,1587600,4410000,5336100,
%T A335220 21344400
%N A335220 Exponential Zumkeller numbers (A335218) whose set of exponential divisors can be partitioned into two disjoint sets of equal sum in a record number of ways.
%C A335220 The corresponding record values are 1, 3, 4, 6, 83, 2920, 81080, 254566, 344022, 487267, 4580715031, ...
%e A335220 36 is the first term since it is the least exponential Zumkeller number, and its exponential divisors, {6, 12, 18, 36}, can be partitioned in a single way: 6 + 12 + 18 = 36. The next exponential Zumkeller number with more than one partition is 900, whose nonunitary divisors, {30, 60, 90, 150, 180, 300, 450, 900}, can be partitioned in 3 ways: 30 + 60 + 90 + 150 + 300 + 450 = 180 + 900, 60 + 90 + 180 + 300 + 450 = 30 + 150 + 900, and 150 + 180 + 300 + 450 = 30 + 60 + 90 + 900.
%t A335220 dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; eDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expDivQ[n, #] &]]; nways[n_] := Module[{d = eDivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], 0, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]]/2]]; nwaysm = 0; s = {}; Do[nways1 = nways[n]; If[nways1 > nwaysm, nwaysm = nways1; AppendTo[s, n]], {n, 1, 23000}]; s
%Y A335220 The exponential version of A083212.
%Y A335220 Subsequence of A335218.
%Y A335220 Cf. A335219.
%K A335220 nonn,more
%O A335220 1,1
%A A335220 _Amiram Eldar_, May 27 2020