This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335220 #5 May 27 2020 14:20:48 %S A335220 36,900,3600,22500,44100,176400,705600,1587600,4410000,5336100, %T A335220 21344400 %N A335220 Exponential Zumkeller numbers (A335218) whose set of exponential divisors can be partitioned into two disjoint sets of equal sum in a record number of ways. %C A335220 The corresponding record values are 1, 3, 4, 6, 83, 2920, 81080, 254566, 344022, 487267, 4580715031, ... %e A335220 36 is the first term since it is the least exponential Zumkeller number, and its exponential divisors, {6, 12, 18, 36}, can be partitioned in a single way: 6 + 12 + 18 = 36. The next exponential Zumkeller number with more than one partition is 900, whose nonunitary divisors, {30, 60, 90, 150, 180, 300, 450, 900}, can be partitioned in 3 ways: 30 + 60 + 90 + 150 + 300 + 450 = 180 + 900, 60 + 90 + 180 + 300 + 450 = 30 + 150 + 900, and 150 + 180 + 300 + 450 = 30 + 60 + 90 + 900. %t A335220 dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; eDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expDivQ[n, #] &]]; nways[n_] := Module[{d = eDivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], 0, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]]/2]]; nwaysm = 0; s = {}; Do[nways1 = nways[n]; If[nways1 > nwaysm, nwaysm = nways1; AppendTo[s, n]], {n, 1, 23000}]; s %Y A335220 The exponential version of A083212. %Y A335220 Subsequence of A335218. %Y A335220 Cf. A335219. %K A335220 nonn,more %O A335220 1,1 %A A335220 _Amiram Eldar_, May 27 2020