This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335235 #8 May 30 2020 09:18:39 %S A335235 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,23,24,25,27,28,29,30, %T A335235 31,32,33,35,37,38,39,41,44,47,48,49,50,51,52,55,56,57,59,60,61,62,63, %U A335235 64,65,66,67,68,71,72,75,77,78,79,80,83,89,92,95,96,97 %N A335235 Numbers k such that the k-th composition in standard order (A066099) is pairwise coprime, where a singleton is always considered coprime. %C A335235 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A335235 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A335235 The sequence together with the corresponding compositions begins: %e A335235 1: (1) 20: (2,3) 48: (1,5) %e A335235 2: (2) 23: (2,1,1,1) 49: (1,4,1) %e A335235 3: (1,1) 24: (1,4) 50: (1,3,2) %e A335235 4: (3) 25: (1,3,1) 51: (1,3,1,1) %e A335235 5: (2,1) 27: (1,2,1,1) 52: (1,2,3) %e A335235 6: (1,2) 28: (1,1,3) 55: (1,2,1,1,1) %e A335235 7: (1,1,1) 29: (1,1,2,1) 56: (1,1,4) %e A335235 8: (4) 30: (1,1,1,2) 57: (1,1,3,1) %e A335235 9: (3,1) 31: (1,1,1,1,1) 59: (1,1,2,1,1) %e A335235 11: (2,1,1) 32: (6) 60: (1,1,1,3) %e A335235 12: (1,3) 33: (5,1) 61: (1,1,1,2,1) %e A335235 13: (1,2,1) 35: (4,1,1) 62: (1,1,1,1,2) %e A335235 14: (1,1,2) 37: (3,2,1) 63: (1,1,1,1,1,1) %e A335235 15: (1,1,1,1) 38: (3,1,2) 64: (7) %e A335235 16: (5) 39: (3,1,1,1) 65: (6,1) %e A335235 17: (4,1) 41: (2,3,1) 66: (5,2) %e A335235 18: (3,2) 44: (2,1,3) 67: (5,1,1) %e A335235 19: (3,1,1) 47: (2,1,1,1,1) 68: (4,3) %t A335235 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A335235 Select[Range[0,100],Length[stc[#]]==1||CoprimeQ@@stc[#]&] %Y A335235 The version counting partitions is A051424, with strict case A007360. %Y A335235 The version for binary indices is A087087. %Y A335235 The version counting compositions is A101268. %Y A335235 The version for prime indices is A302569. %Y A335235 The case without singletons is A333227. %Y A335235 The complement is A335236. %Y A335235 Numbers whose binary indices are pairwise coprime are A326675. %Y A335235 Coprime partitions are counted by A327516. %Y A335235 All of the following pertain to compositions in standard order: %Y A335235 - Length is A000120. %Y A335235 - The parts are row k of A066099. %Y A335235 - Sum is A070939. %Y A335235 - Product is A124758. %Y A335235 - Reverse is A228351 %Y A335235 - GCD is A326674. %Y A335235 - Heinz number is A333219. %Y A335235 - LCM is A333226. %Y A335235 Cf. A048793, A272919, A291166, A302569, A335236, A335237, A335238, A335239, A335240. %K A335235 nonn %O A335235 1,2 %A A335235 _Gus Wiseman_, May 28 2020