This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335236 #9 May 30 2020 09:18:48 %S A335236 0,10,21,22,26,34,36,40,42,43,45,46,53,54,58,69,70,73,74,76,81,82,84, %T A335236 85,86,87,88,90,91,93,94,98,100,104,106,107,109,110,117,118,122,130, %U A335236 136,138,139,141,142,146,147,148,149,150,153,154,156,160,162,163,164 %N A335236 Numbers k such that the k-th composition in standard order (A066099) is not a singleton nor pairwise coprime. %C A335236 These are compositions whose product is strictly greater than the LCM of their parts. %C A335236 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A335236 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A335236 The sequence together with the corresponding compositions begins: %e A335236 0: () 74: (3,2,2) 109: (1,2,1,2,1) %e A335236 10: (2,2) 76: (3,1,3) 110: (1,2,1,1,2) %e A335236 21: (2,2,1) 81: (2,4,1) 117: (1,1,2,2,1) %e A335236 22: (2,1,2) 82: (2,3,2) 118: (1,1,2,1,2) %e A335236 26: (1,2,2) 84: (2,2,3) 122: (1,1,1,2,2) %e A335236 34: (4,2) 85: (2,2,2,1) 130: (6,2) %e A335236 36: (3,3) 86: (2,2,1,2) 136: (4,4) %e A335236 40: (2,4) 87: (2,2,1,1,1) 138: (4,2,2) %e A335236 42: (2,2,2) 88: (2,1,4) 139: (4,2,1,1) %e A335236 43: (2,2,1,1) 90: (2,1,2,2) 141: (4,1,2,1) %e A335236 45: (2,1,2,1) 91: (2,1,2,1,1) 142: (4,1,1,2) %e A335236 46: (2,1,1,2) 93: (2,1,1,2,1) 146: (3,3,2) %e A335236 53: (1,2,2,1) 94: (2,1,1,1,2) 147: (3,3,1,1) %e A335236 54: (1,2,1,2) 98: (1,4,2) 148: (3,2,3) %e A335236 58: (1,1,2,2) 100: (1,3,3) 149: (3,2,2,1) %e A335236 69: (4,2,1) 104: (1,2,4) 150: (3,2,1,2) %e A335236 70: (4,1,2) 106: (1,2,2,2) 153: (3,1,3,1) %e A335236 73: (3,3,1) 107: (1,2,2,1,1) 154: (3,1,2,2) %t A335236 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A335236 Select[Range[0,100],!(Length[stc[#]]==1||CoprimeQ@@stc[#])&] %Y A335236 The version for prime indices is A316438. %Y A335236 The version for binary indices is A335237. %Y A335236 The complement is A335235. %Y A335236 The version with singletons allowed is A335239. %Y A335236 Binary indices are pairwise coprime or a singleton: A087087. %Y A335236 The version counting partitions is 1 + A335240. %Y A335236 All of the following pertain to compositions in standard order: %Y A335236 - Length is A000120. %Y A335236 - The parts are row k of A066099. %Y A335236 - Sum is A070939. %Y A335236 - Product is A124758. %Y A335236 - Reverse is A228351 %Y A335236 - GCD is A326674. %Y A335236 - Heinz number is A333219. %Y A335236 - LCM is A333226. %Y A335236 Cf. A007360, A048793, A051424, A101268, A272919, A291166, A302569, A326675, A333227, A333228, A335238. %K A335236 nonn %O A335236 1,2 %A A335236 _Gus Wiseman_, May 28 2020