This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335237 #7 May 30 2020 09:18:55 %S A335237 0,10,11,14,15,26,27,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47, %T A335237 50,51,52,53,54,55,56,57,58,59,60,61,62,63,74,75,78,79,90,91,94,95,98, %U A335237 99,100,101,102,103,104,105,106,107,108,109,110,111,114,115,116 %N A335237 Numbers whose binary indices are not a singleton nor pairwise coprime. %C A335237 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %F A335237 Complement in A001477 of A326675 and A000079. %e A335237 The sequence of terms together with their binary expansions and binary indices begins: %e A335237 0: 0 ~ {} %e A335237 10: 1010 ~ {2,4} %e A335237 11: 1011 ~ {1,2,4} %e A335237 14: 1110 ~ {2,3,4} %e A335237 15: 1111 ~ {1,2,3,4} %e A335237 26: 11010 ~ {2,4,5} %e A335237 27: 11011 ~ {1,2,4,5} %e A335237 30: 11110 ~ {2,3,4,5} %e A335237 31: 11111 ~ {1,2,3,4,5} %e A335237 34: 100010 ~ {2,6} %e A335237 35: 100011 ~ {1,2,6} %e A335237 36: 100100 ~ {3,6} %e A335237 37: 100101 ~ {1,3,6} %e A335237 38: 100110 ~ {2,3,6} %e A335237 39: 100111 ~ {1,2,3,6} %e A335237 40: 101000 ~ {4,6} %e A335237 41: 101001 ~ {1,4,6} %e A335237 42: 101010 ~ {2,4,6} %e A335237 43: 101011 ~ {1,2,4,6} %e A335237 44: 101100 ~ {3,4,6} %t A335237 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A335237 Select[Range[0,100],!(Length[bpe[#]]==1||CoprimeQ@@bpe[#])&] %Y A335237 The version for prime indices is A316438. %Y A335237 The version for standard compositions is A335236. %Y A335237 Numbers whose binary indices are pairwise coprime or a singleton: A087087. %Y A335237 Non-coprime partitions are counted by A335240. %Y A335237 All of the following pertain to compositions in standard order (A066099): %Y A335237 - Length is A000120. %Y A335237 - Sum is A070939. %Y A335237 - Product is A124758. %Y A335237 - Reverse is A228351 %Y A335237 - GCD is A326674. %Y A335237 - Heinz number is A333219. %Y A335237 - LCM is A333226. %Y A335237 Cf. A007360, A048793, A051424, A101268, A291166, A302569, A326675, A333227, A333228, A335235, A335239. %K A335237 nonn %O A335237 1,2 %A A335237 _Gus Wiseman_, May 28 2020