This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335239 #6 May 30 2020 09:19:09 %S A335239 0,2,4,8,10,16,21,22,26,32,34,36,40,42,43,45,46,53,54,58,64,69,70,73, %T A335239 74,76,81,82,84,85,86,87,88,90,91,93,94,98,100,104,106,107,109,110, %U A335239 117,118,122,128,130,136,138,139,141,142,146,147,148,149,150,153 %N A335239 Numbers k such that the k-th composition in standard-order (A066099) does not have all pairwise coprime parts, where a singleton is not coprime unless it is (1). %C A335239 We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1). %C A335239 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %e A335239 The sequence together with the corresponding compositions begins: %e A335239 0: () 45: (2,1,2,1) 86: (2,2,1,2) %e A335239 2: (2) 46: (2,1,1,2) 87: (2,2,1,1,1) %e A335239 4: (3) 53: (1,2,2,1) 88: (2,1,4) %e A335239 8: (4) 54: (1,2,1,2) 90: (2,1,2,2) %e A335239 10: (2,2) 58: (1,1,2,2) 91: (2,1,2,1,1) %e A335239 16: (5) 64: (7) 93: (2,1,1,2,1) %e A335239 21: (2,2,1) 69: (4,2,1) 94: (2,1,1,1,2) %e A335239 22: (2,1,2) 70: (4,1,2) 98: (1,4,2) %e A335239 26: (1,2,2) 73: (3,3,1) 100: (1,3,3) %e A335239 32: (6) 74: (3,2,2) 104: (1,2,4) %e A335239 34: (4,2) 76: (3,1,3) 106: (1,2,2,2) %e A335239 36: (3,3) 81: (2,4,1) 107: (1,2,2,1,1) %e A335239 40: (2,4) 82: (2,3,2) 109: (1,2,1,2,1) %e A335239 42: (2,2,2) 84: (2,2,3) 110: (1,2,1,1,2) %e A335239 43: (2,2,1,1) 85: (2,2,2,1) 117: (1,1,2,2,1) %t A335239 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A335239 Select[Range[0,100],!CoprimeQ@@stc[#]&] %Y A335239 The complement is A333227. %Y A335239 The version without singletons is A335236. %Y A335239 Ignoring repeated parts gives A335238. %Y A335239 Singleton or pairwise coprime partitions are counted by A051424. %Y A335239 Singleton or pairwise coprime sets are ranked by A087087. %Y A335239 Numbers whose binary indices are pairwise coprime are A326675. %Y A335239 Coprime partitions are counted by A327516. %Y A335239 Non-coprime partitions are counted by A335240. %Y A335239 All of the following pertain to compositions in standard order (A066099): %Y A335239 - Length is A000120. %Y A335239 - Sum is A070939. %Y A335239 - Product is A124758. %Y A335239 - Reverse is A228351 %Y A335239 - GCD is A326674. %Y A335239 - Heinz number is A333219. %Y A335239 - LCM is A333226. %Y A335239 - Coprime compositions are A333227. %Y A335239 - Compositions whose distinct parts are coprime are A333228. %Y A335239 - Number of distinct parts is A334028. %Y A335239 Cf. A007360, A048793, A101268, A291166, A302569, A335235, A335237. %K A335239 nonn %O A335239 1,2 %A A335239 _Gus Wiseman_, May 28 2020