This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335240 #12 Feb 16 2021 10:51:32 %S A335240 1,0,1,1,2,2,5,6,11,16,25,34,51,69,98,134,181,238,316,410,536,691,887, %T A335240 1122,1423,1788,2246,2800,3483,4300,5304,6508,7983,9745,11869,14399, %U A335240 17436,21040,25367,30482,36568,43735,52239,62239,74073,87950,104277,123348 %N A335240 Number of integer partitions of n that are not pairwise coprime, where a singleton is not coprime unless it is (1). %C A335240 We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1). %C A335240 These are also partitions that are a singleton or whose product is strictly greater than the LCM of their parts. %H A335240 Fausto A. C. Cariboni, <a href="/A335240/b335240.txt">Table of n, a(n) for n = 0..750</a> %e A335240 The a(2) = 1 through a(9) = 16 partitions: %e A335240 (2) (3) (4) (5) (6) (7) (8) (9) %e A335240 (22) (221) (33) (322) (44) (63) %e A335240 (42) (331) (62) (333) %e A335240 (222) (421) (332) (432) %e A335240 (2211) (2221) (422) (441) %e A335240 (22111) (2222) (522) %e A335240 (3221) (621) %e A335240 (3311) (3222) %e A335240 (4211) (3321) %e A335240 (22211) (4221) %e A335240 (221111) (22221) %e A335240 (32211) %e A335240 (33111) %e A335240 (42111) %e A335240 (222111) %e A335240 (2211111) %t A335240 Table[Length[Select[IntegerPartitions[n],!CoprimeQ@@#&]],{n,0,30}] %Y A335240 The version for relatively prime instead of coprime is A018783. %Y A335240 The Heinz numbers of these partitions are the complement of A302696. %Y A335240 The complement is counted by A327516. %Y A335240 Singleton or pairwise coprime partitions are counted by A051424. %Y A335240 Singleton or pairwise coprime sets are ranked by A087087. %Y A335240 Numbers whose binary indices are pairwise coprime are A326675. %Y A335240 All of the following pertain to compositions in standard order (A066099): %Y A335240 - GCD is A326674. %Y A335240 - LCM is A333226. %Y A335240 - Coprime compositions are A333227. %Y A335240 - Compositions whose distinct parts are coprime are A333228. %Y A335240 - Non-coprime compositions are A335239. %Y A335240 Cf. A007360, A101268, A302569, A335235, A335236, A335237, A335238. %K A335240 nonn %O A335240 0,5 %A A335240 _Gus Wiseman_, May 30 2020