This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335241 #8 May 30 2020 19:14:37 %S A335241 1,3,5,7,9,11,13,17,18,19,21,23,25,27,29,31,36,37,39,41,42,43,45,47, %T A335241 49,50,53,54,57,59,61,63,65,67,71,72,73,75,78,79,81,83,84,87,89,90,91, %U A335241 97,98,99,100,101,103,105,107,108,109,111,113,114,115,117,121 %N A335241 Numbers whose prime indices are not pairwise coprime, where a singleton is not coprime unless it is {1}. %C A335241 We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1). %C A335241 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A335241 The sequence of terms together with their prime indices begins: %e A335241 1: {} 31: {11} 61: {18} %e A335241 3: {2} 36: {1,1,2,2} 63: {2,2,4} %e A335241 5: {3} 37: {12} 65: {3,6} %e A335241 7: {4} 39: {2,6} 67: {19} %e A335241 9: {2,2} 41: {13} 71: {20} %e A335241 11: {5} 42: {1,2,4} 72: {1,1,1,2,2} %e A335241 13: {6} 43: {14} 73: {21} %e A335241 17: {7} 45: {2,2,3} 75: {2,3,3} %e A335241 18: {1,2,2} 47: {15} 78: {1,2,6} %e A335241 19: {8} 49: {4,4} 79: {22} %e A335241 21: {2,4} 50: {1,3,3} 81: {2,2,2,2} %e A335241 23: {9} 53: {16} 83: {23} %e A335241 25: {3,3} 54: {1,2,2,2} 84: {1,1,2,4} %e A335241 27: {2,2,2} 57: {2,8} 87: {2,10} %e A335241 29: {10} 59: {17} 89: {24} %t A335241 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A335241 Select[Range[100],!CoprimeQ@@primeMS[#]&] %Y A335241 The complement is A302696. %Y A335241 The version for relatively prime instead of coprime is A318978. %Y A335241 The version for standard compositions is A335239. %Y A335241 These are the Heinz numbers of the partitions counted by A335240. %Y A335241 Singleton or pairwise coprime partitions are counted by A051424. %Y A335241 Singleton or pairwise coprime sets are ranked by A087087. %Y A335241 Primes and numbers with pairwise coprime prime indices are A302569. %Y A335241 Numbers whose binary indices are pairwise coprime are A326675. %Y A335241 Coprime standard composition numbers are A333227. %Y A335241 Cf. A007360, A101268, A326674, A327516, A333228, A335236, A335237, A335238. %K A335241 nonn %O A335241 1,2 %A A335241 _Gus Wiseman_, May 30 2020