A335250 Numbers m such that twice the number of unordered Goldbach partitions of 2m equals the number of unordered Goldbach partitions of 4m.
1, 4, 9, 15, 21, 30, 40, 46, 69, 70, 79, 81, 82, 106, 114, 199, 229, 256, 361, 391, 469, 586, 754, 760, 766, 826, 892, 1471, 1483, 1525, 1591, 1609, 1624, 1816, 2194, 2206, 2454, 2629, 2869, 3955, 3961, 3964, 6406, 6946, 11749
Offset: 1
Examples
m=4 is a term because 2m=8 has the partition (3,5) while 4m=16 has the partitions (3,13) and (5,11).
Programs
-
PARI
for(n=1, 200000, x=0; y=0; forprime(i=2, 2*n-1, if(i<=n && isprime(2*n-i), x=x+1; ); if(isprime(4*n-i), y=y+1; ); ); if(2*x==y, print1(n, ", ")))
Comments