cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A335252 Numbers k such that k and k+2 have the same unitary abundance (A129468).

Original entry on oeis.org

12, 63, 117, 323, 442, 1073, 1323, 1517, 3869, 5427, 6497, 12317, 18419, 35657, 69647, 79919, 126869, 133787, 151979, 154007, 163332, 181427, 184619, 333797, 404471, 439097, 485237, 581129, 621497, 825497, 1410119, 2696807, 3077909, 3751619, 5145341, 6220607
Offset: 1

Views

Author

Amiram Eldar, May 28 2020

Keywords

Comments

Are 12, 442 and 163332 the only even terms?
Are there any unitary abundant numbers (A034683) in this sequence?
No further even terms up to 10^13. - Giovanni Resta, May 30 2020

Examples

			12 is a term since 12 and 14 have the same unitary abundance: A129468(12) = usigma(12) - 2*12 = 20 - 24 = -4, and A129468(14) = usigma(14) - 2*14 = 24 - 28 = -4.
		

Crossrefs

The unitary version of A330901.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); udef[n_] := 2*n - usigma[n]; Select[Range[10^5], udef[#] == udef[# + 2] &]
Showing 1-1 of 1 results.