This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335258 #21 Feb 24 2021 08:16:46 %S A335258 1,3,3,315,567,155925,93555,638512875,127702575,1856156927625, %T A335258 7795859096025,49308808782358125,56894779364259375, %U A335258 1298054391195577640625,95646113035463615625,122529844256906551386796875,47570410123269602303109375,2405873491984360136479756640625 %N A335258 Denominators of expansion of arctanh(tan(x)) (odd powers only). %C A335258 The denominators of a series used by Johann Heinrich Lambert (1728-1777) in expressing the relationship between a circular sector and a hyperbolic sector. %C A335258 Lambert gave a(1)-a(4). %D A335258 Johann Heinrich Lambert: ``Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques,'' Histoire de l'Académie Royale des Sciences et Belles-Lettres, 1761, volume XVII, Berlin, 1768, pp. 265-322. %H A335258 <a href="https://books.google.fr/books?id=sQIOAAAAQAAJ&pg=PA319">Lambert's use of the series</a> %H A335258 Denis Roegel, <a href="https://hal.archives-ouvertes.fr/hal-02984214">Lambert's proof of the irrationality of Pi: Context and translation</a>, hal-02984214 [math.HO], 2020. %e A335258 arctan(tanh(x)) = x - 2/3*x^3 + 2/3*x^5 - 244/315*x^7 + 554/567*x^9 ... %e A335258 arctanh(tan(x)) = x + 2/3*x^3 + 2/3*x^5 + 244/315*x^7 + 554/567*x^9 ... %t A335258 Denominator @ CoefficientList[ Series[ArcTanh[Tan[x]], {x, 0, 36}], x][[2 ;; -1 ;; 2]] (* _Amiram Eldar_, Jun 04 2020 *) %o A335258 (PARI) my(x='x+O('x^40), v=Vec(atanh(tan(x)))); apply(denominator, vector(#v\2, k, v[2*k-1])) \\ _Michel Marcus_, Jun 05 2020 %Y A335258 Cf. A335257. %K A335258 nonn %O A335258 1,2 %A A335258 _Denis Roegel_, May 28 2020