cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A335261 Irregular triangle S(n,k) = denominators of k*A002110(n)/A005867(n) for 1 <= k <= A005867(n).

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 4, 1, 4, 2, 4, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 16, 8, 16, 4, 16, 8, 16, 2, 16, 8, 16, 4, 16, 8, 16, 1, 16, 8, 16, 4, 16, 8, 16
Offset: 1

Views

Author

Keywords

Comments

Alternatively, denominators of k*A060753(n)/A038110(n) for 1 <= k <= A005867(n).
Let m = A038110(n). For row n, the primitive denominators d | m.
The mean of row n is related to the mean of row n of A309497: A060753(n+1)/(A038110(n+1)*2) = Mean(A309497(n))/A038110(n+1).

Examples

			Table begins:
    1;
    1;
    1, 1;
    4, 2, 4, 1, 4, 2, 4, 1;
    8, 4, 8, 2, 8, 4, 8, 1, ..., 8, 1;
    ...
Row n = 4 contains the denominators of (35/8)*k for 1 <= k <= A005867(4): 35/8, 35/4, 105/8, 35/2, 175/8, 105/4, 245/8, 35, 315/8, 175/4, 385/8, 105/2, 455/8, 245/4, 525/8, 70, 595/8, 315/4, 665/8, 175/2, 735/8, 385/4, 805/8, 105, 875/8, 455/4, 945/8, 245/2, 1015/8, 525/4, 1085/8, 140, 1155/8, 595/4, 1225/8, 315/2, 1295/8, 665/4, 1365/8, 175, 1435/8, 735/4, 1505/8, 385/2, 1575/8, 805/4, 1645/8, 210.
The mean of row 4: (A060753(4+1)/(A038110(4+1)*2))*(A005867(4)+1) = (35/(8*2))*(48+1) = (35/16)*49 = 1715/16.
		

Crossrefs

Programs

  • Mathematica
    Table[Denominator[P Range[EulerPhi[P]]/EulerPhi[P]], {P, FoldList[Times, Prime@ Range@ 5]}] (* or, more efficiently for larger datasets: *)
    Flatten@ Block[{nn = 7, s, t}, s = Array[Numerator@ Product[1 - 1/Prime[k], {k, # - 1}] &, nn]; t = Nest[Append[#, #[[-1]] (Prime[Length@ #] - 1)]&, {1}, nn]; MapIndexed[Function[{m, D, i}, PadRight[{}, t[[i]], ReplacePart[ConstantArray[0, m], Flatten@ Map[Function[d, Map[# -> d &, m/d Select[Range[d], GCD[#, d] == 1 &]]], D]]]] @@ {#1, Divisors@ #1, First[#2]} &, s]]
    (* or, to generate a single denominator of T(n,k) *)
    f[n_, k_] := #/GCD[#, Mod[k, #]] &@ Numerator@ Product[1 - 1/Prime[i], {i, n - 1}]

Formula

T(n,k) = m/GCD(k (mod m), m) with m = A038110(n).
Row lengths: A005867(n).
Showing 1-1 of 1 results.