This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335262 #20 May 30 2020 05:06:23 %S A335262 0,1,0,3,0,1,6,1,0,3,10,3,0,1,6,15,6,1,0,3,10,21,10,3,0,1,6,15,28,15, %T A335262 6,1,0,3,10,21,36,21,10,3,0,1,6,15,28,45,28,15,6,1,0,3,10,21,36,55,36, %U A335262 21,10,3,0,1,6,15,28,45,66,45,28,15,6,1,0,3,10,21,36,55 %N A335262 Triangle of triangular numbers, read by rows, constructed like this: Given a sequence t, start row 0 with t(0). Compute row n for n > 0 by reversing row n-1 and prepending t(n). The sequence t is here chosen as the triangular numbers. %F A335262 T(n, k) = Pochhammer(2*k - 1 - n, 2) / 2!. %F A335262 Row n is generated by the quadratic polynomial 2*x^2 - (2*n+5)*x + t(n+2), where t(n) are the triangular numbers, evaluated at x = k + 1. %F A335262 T(n, k) = (2*k-1-n)*(2*k-n)/2. - _Michel Marcus_, May 29 2020 %e A335262 Triangle starts: %e A335262 0; %e A335262 1, 0; %e A335262 3, 0, 1; %e A335262 6, 1, 0, 3; %e A335262 10, 3, 0, 1, 6; %e A335262 15, 6, 1, 0, 3, 10; %e A335262 21, 10, 3, 0, 1, 6, 15; %e A335262 28, 15, 6, 1, 0, 3, 10, 21; %e A335262 36, 21, 10, 3, 0, 1, 6, 15, 28; %e A335262 45, 28, 15, 6, 1, 0, 3, 10, 21, 36; %e A335262 55, 36, 21, 10, 3, 0, 1, 6, 15, 28, 45; %e A335262 66, 45, 28, 15, 6, 1, 0, 3, 10, 21, 36, 55; %e A335262 78, 55, 36, 21, 10, 3, 0, 1, 6, 15, 28, 45, 66; %p A335262 T := (n,k) -> pochhammer(2*k - 1 - n, 2)/2: %p A335262 seq(seq(T(n,k), k=0..n), n=0..11); %o A335262 (Python) %o A335262 def T(num_rows): %o A335262 t, s = 1, 1 %o A335262 L, R = [0], [0] %o A335262 for n in range(1, num_rows): %o A335262 R.reverse() %o A335262 R.insert(0, t) %o A335262 L.extend(R) %o A335262 t, s = t+s+1, s+1 %o A335262 return L %o A335262 print(T(12)) %o A335262 (PARI) T(n, k) = (2*k-1-n)*(2*k-n)/2; %o A335262 tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ _Michel Marcus_, May 29 2020 %Y A335262 Row sums give the triangular pyramidal numbers A000292. %Y A335262 Cf. A000217 (triangular numbers), A112367, A181940. %K A335262 nonn,tabl %O A335262 0,4 %A A335262 _Peter Luschny_, May 29 2020