This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A335274 #23 Mar 20 2025 06:26:47 %S A335274 0,1,4,8,17,38,84,185,408,900,1985,4378,9656,21297,46972,103600, %T A335274 228497,503966,1111532,2451561,5407088,11925708,26302977,58013042, %U A335274 127951792,282206561,622426164,1372804120,3027814801,6678055766,14728915652,32485646105,71649347976 %N A335274 a(n) = 2*a(n-1) + a(n-3), where a(0) = 0, a(1) = 1, a(2) = 4. %C A335274 a(n) is the number of ways to tile a 2 x n strip, with a bent tromino added to the top, with dominos and L-shaped trominos: %C A335274 _ %C A335274 |_|_ %C A335274 |_|_|_ _ _ %C A335274 |_|_|_|_|_| . . . %C A335274 |_|_|_|_|_| . . . %H A335274 Colin Barker, <a href="/A335274/b335274.txt">Table of n, a(n) for n = 0..1000</a> %H A335274 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,1). %F A335274 a(n) = 2*a(n-1) + a(n-3). %F A335274 a(n) = 2*A008998(n-1) - A008998(n-4). %F A335274 a(n) = A008998(n-1) + 2*A008998(n-2). %F A335274 G.f.: x*(1 + 2*x) / (1 - 2*x - x^3). - _Colin Barker_, Jun 04 2020 %e A335274 a(2) = 4 as shown by these four tilings: %e A335274 _ _ _ _ %e A335274 |X|_ | |_ |X|_ | |_ %e A335274 |X|X| , |_|X| , |X|X| , |_| | %e A335274 |_ _| |X X| | | | |X|_| %e A335274 |_ _| |_ _| |_|_| |X X| %t A335274 LinearRecurrence[{2, 0, 1}, {0, 1, 4}, 50] (* _Paolo Xausa_, Mar 20 2025 *) %o A335274 (PARI) concat(0, Vec(x*(1 + 2*x) / (1 - 2*x - x^3) + O(x^35))) \\ _Colin Barker_, Jun 04 2020 %Y A335274 Cf. A008998, A335242. %K A335274 nonn,easy %O A335274 0,3 %A A335274 _Michael Tulskikh_, May 30 2020